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Interaction of a finite quantum system Sa
ρ that contains ρ eigenvalues and eigenstates

with an infinite quantum system Sb∞ that contains a single one-parameter eigenvalue
band is considered. A new approach for the treatment of the combined system S∞ ≡
Sa
ρ ⊕ Sb∞ is developed. This system contains embedded eigenstates

∣
∣Ψ(ε)

〉

with contin-
uous eigenvalues ε, and, in addition, it may contain isolated eigenstates

∣
∣Ψs

〉

with dis-
crete eigenvalues εs . Two ρ×ρ eigenvalue equations, a generic eigenvalue equation and
a fractional shift eigenvalue equation are derived. It is shown that all properties of the
system Sa

ρ that interacts with the system Sb∞ can be expressed in terms of the solutions
to those two equations. The suggested method produces correct results, however strong
the interaction between quantum systems Sa

ρ and Sb∞. In the case of the weak inter-
action this method reproduces results that are usually obtained within the formalism
of the perturbation expansion approach. However, if the interaction is strong one may
encounter new phenomena with much more complex behavior. This is also the region
where standard perturbation expansion fails. The method is illustrated with an exam-
ple of a two-dimensional system Sa

2 that interacts with the infinite system Sb∞ that con-
tains a single one-parameter eigenvalue band. It is shown that all relevant completeness
relations are satisfied, however strong the interaction between those two systems. This
provides a strong verification of the suggested method.

KEY WORDS: interaction of quantum systems, time-independent perturbation, open
quantum systems

1. Introduction

Consider the interaction of a finite quantum system Sa
ρ that contains ρ dis-

crete eigenvalues and eigenstates with an infinite quantum system Sb
∞. System

Sa
ρ can be an arbitrary finite quantum system, while system Sb

∞ can be an arbi-
trary infinite system that contains eigenvalue bands and/or isolated eigenstates.
We assume that the solution to the system Sb

∞ is known, and we concentrate
on the following problem: What is the solution of a system Sa

ρ subject to the
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interaction with the system Sb
∞? In formal mathematical terms the solution of

this problem requires determination of the eigenvalues and eigenstates of the
combined system S∞ ≡ Sa

ρ ⊕ Sb∞.
There are numerous problems in physics and chemistry of this type. For

example, consider the interaction of an isolated molecule with the electromag-
netic field [1, 2]. This molecule can be approximated with a system Sa

ρ containing
finite number of eigenvalues Es and eigenstates |Θs〉. Those eigenstates interact
with one-photon states

∣
∣Θp, k�

〉

where |k� 〉 represents a state containing one-
photon with momentum k and polarization � . States

∣
∣Θp, k�

〉

interact with
two-photon states

∣
∣Θr , k′� ′, k′′� ′′〉, which in turn interact with three-photon

states, etc. [1]. If there is no external electromagnetic field, one can to a very
good approximation ignore all states containing multiple photons, and one can
associate system Sb

∞ with the set of all one-photon states
∣
∣Θp, k�

〉

with corre-
sponding eigenvalues. The solution to this system is known since the states |k� 〉
are essentially plane waves, while

∣
∣Θp

〉

are eigenstates of the isolated molecule.
Hence one has formally the interaction of a finite system Sa

ρ with the known
infinite system Sb

∞. With an appropriate modification, in the similar way can be
treated the case when an external electromagnetic field is present. As another
example consider the interaction of the molecule situated on the surface of some
solid with this solid. Molecule in isolation can be again approximated with a
finite dimensional system Sa

ρ . System Sb
∞ represents a solid with a surface. The

solution to this system usually consists of multiple eigenvalue bands λs(k) with
the corresponding eigenstates |Φs(k)〉 (s = 1, 2, . . .) [3]. In addition, system Sb

∞
may contain some discrete eigenvalues corresponding to the surface states [4].
One is usually interested in the properties of the molecule (system Sa

ρ) subject to
the interaction with a solid (system Sb

∞). Again one can assume that the solu-
tion to the system Sb

∞ is known. In most cases one knows only an approximate
solution of this system [3]. Nevertheless, assuming this approximate solution to
be good enough, the problem is to find a solution of the combined system S∞
with emphasize on the properties of the subsystem Sa

ρ .
Those and similar problems are usually treated either within the formalism

of the perturbation expansion method (where Sa
ρ is treated as the unperturbed

system), or using some approximate semiclassical model [1–4]. If the interaction
between the systems Sa

ρ and Sb
∞ is relatively strong, convergence of the pertur-

bation series may be very slow. In many cases of interest perturbation expansion
may even diverge and the entire method fails. Also, if the interaction is relatively
weak but if highly accurate results are needed, perturbation method may involve
unacceptably large number of terms in order to obtain the required accuracy.
Concerning various semiclassical models, those models are only approximate and
they can never completely replace exact quantum treatment.

Recently a new method for the solution of those and similar problems was
suggested [5–7]. This method produces exact description of a quantum system



520 T.P. Živković / Interaction of a finite quantum system

Sa
ρ that interacts with a quantum system Sb

∞, however strong the interaction
between those two systems. There is no power series expansion and no diver-
gence problem. This method was initially formulated for the interaction of a
quantum system Sa

1 that contains only one eigenstate with a quantum system
Sb

∞ that contains a single one-parameter eigenvalue band [5]. Next the method
was generalized to arbitrary quantum systems Sb

∞, retaining still the condition
that the system Sa

1 contains only one eigenstate [6, 7].
In a present paper the suggested method is generalized from the case ρ = 1

to the arbitrary case ρ > 1. In order to avoid possible complications that are not
essential for this generalization, the system Sb

∞ is simplified and it is assumed
that this system contains a single one-parameter eigenvalue band. Appropriate
expressions for the more general case of the interaction of an arbitrary finite
system Sa

ρ with an arbitrary infinite system Sb
∞ can be obtained by combin-

ing results derived in this paper with results derived previously [8]. Also, in a
present paper only a time-independent case is considered. Generalization to the
time-dependent case is rather straightforward and it can be done along the lines
described elsewhere [5–7].

2. Mathematical formulation of a problem

The system Sa
ρ can be an arbitrary ρ-dimensional quantum system. With

this system is associated ρ-dimensional space Xa
ρ . This system is described by the

generalized eigenvalue equation

A |Θs〉 = EsSa |Θs〉 , s = 1, . . . , ρ, (1a)

where A and Sa are Hermitian operators in Xa
ρ , while Sa is in addition positive

definite in this space. This guaranties reality of the eigenvalues Es . Eigenstates
|Θs〉 can be orthonormalized according to

〈

Θs
∣
∣ Sa

∣
∣Θp

〉 = δsp. (1b)

Since |Θs〉 form a complete set in Xa
ρ this implies

ρ
∑

s

|Θs〉 〈Θs | Sa = Ia, (1c)

where Ia is a unite operator in Xa
ρ . We refer to the eigenstates |Θs〉 of a system

Sa
ρ as local states.

The system Sb
∞ is an infinite quantum system that contains a single one-

parameter eigenvalue band and no isolated eigenstates. With this system is
associated an infinite-dimensional space Xb∞. This system is described by the
eigenvalue equation

B |Φ(k)〉 = λ(k) |Φ(k)〉 , k ∈ [ka, kb] , (2a)
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where B is a Hermitian operator in Xb∞ and where λ(k) is continuous monotonic
function of k. Without loss of generality one can assume that λ(k) is monotonic
increasing.

Eigenstates |Φ(k)〉 of B can be orthonormalized according to
〈

Φ(k)
∣
∣ Φ(k′)

〉 = δ(k − k′). (2b)

Eigenvalues λ(k) of B are confined to the range D = [λa, λb], where λa =
λ(ka) is the smallest possible eigenvalue, while λb = λ(kb) is the largest possi-
ble eigenvalue. In the case when the system Sb

∞ contains a single one-parameter
eigenvalue band, range D contains a single interval [λa, λb]. In a general case not
considered here, this range may contain several overlapping and/or disjoint inter-
vals [6–8]. We denote with �D the complement of D.

Relations (1a) and (2a) describe isolated systems Sa
ρ and Sb

∞ without
mutual interaction. An arbitrary interaction between those two systems can be
written in the form β V where V 	= 0 is a Hermitian operator and where β � 0 is
a coupling parameter. Operator V can have nonvanishing matrix elements only
between the states |Θs〉 ∈ Xa

ρ and the states |Φ(k)〉 ∈ Xb∞. Combined system
S∞ ≡ Sa

ρ ⊕ Sb
∞ that includes this interaction is described by the generalized

eigenvalue equation

C |Ψ〉 = ε S |Ψ〉 , (3a)

where

C = A + B + β V, S = Sa + Ib, (3b)

and where Ib is a unit operator in Xb∞. Since Sa is positive definite in Xa
ρ , oper-

ator S is positive definite in the combined space X∞ ≡ Xa
ρ ⊗ Xb∞. Eigenvalues ε

of (3a) are hence real. Those eigenvalues can be discrete, in which case the cor-
responding eigenstates |Ψ〉 are normalized to unity, and they can be continuous,
in which case the corresponding eigenstates |Ψ〉 are normalized to a delta func-
tion [5–7]. In analogy to (1b), this normalization should be done according to
the metrics induced by the operator S.

In the above formulation we have described the system Sa
ρ with a general-

ized eigenvalue equation (1a). However, by far the most important is the case
when Sa ≡ Ia is a unit operator in the space Xa

ρ . In this case generalized eigen-
value equation (1a) reduces to a standard eigenvalue equation. Nevertheless, in
certain cases it may be more appropriate to require Sa 	= Ia . For example, in
the VB approach resonance structures are usually not orthogonal to each other.
This leads to a Schrödinger equation of a type (1a) where Sa 	= Ia . Also the
treatment of molecular vibrations leads to the eigenvalue equation of a type (1a)
involving G and F matrices where G 	= Ia and F 	= Ia [9]. In the approach to
be presented here, there is no substantial difference between the case Sa 	= Ia
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and Sa ≡ Ia . Expressions describing the case Sa 	= Ia are only slightly more
complicated from the expressions describing the case Sa ≡ Ia . For the sake
of generality the system Sa

ρ is therefore described with a generalized eigenvalue
equation (1a). Concerning the infinite system Sb

∞, analogous generalization is
not so important. This system may represent an electromagnetic field, electronic
or vibrational (phonon) states of a solid state, etc. In almost all models such sys-
tems are described by base states that are orthonormalized in a standard way
[1–3]. It is hence assumed that the system Sb

∞ is described by a standard eigen-
value equation (2a). If required, the suggested approach can be generalized to an
arbitrary generalized eigenvalue equation [5].

Parameter β in (3b) is a coupling parameter between systems Sa
ρ and Sb

∞.
Unlike standard perturbation method, the suggested approach does not rely on
any kind of a power series expansion. There is hence no convergence problem,
and resulting relations are valid for each value of β. Therefore one can simply
in all relations replace β V with V. Nevertheless, it is convenient to express the
interaction as β V and not as V. In this way the dependence on the coupling β
is made explicit. In particular, it is easy to obtain results for the important case
of the week coupling, as well as the results for the other extreme of the strong
coupling. To this effect it is convenient to normalize operator V according to

max
Θ∈Xa

ρ

〈

Θ

∣
∣
∣ V2 |Θ

〉

= 1,

where |Θ〉 ∈ Xa
ρ is normalized according to 〈Θ | Sa |Θ〉 = 1.

In the treatment of the system Sa
ρ that interacts with the system Sb

∞ it is
sometimes important to distinguish local eigenvalues Es ∈ D from local eigen-
values Es ∈ �D. In order to emphasize this distinction we will denote with Er
those eigenvalues of (1a) that are contained inside the range D (Er ∈ D) and
with EI (or E J ) those eigenvalues of (1a) that are contained outside this range
(EI , E J ∈ �D). If this distinction is not important we will use generic notation Es
(or E p). The same convention will be applied to all other quantities that refer to
the range D and to its complement �D.

3. Solution of the combined system S∞

If ρ = 1 the combined system S∞ may contain two qualitatively different
types of eigenvalues and eigenstates [5–7]. In the Appendix A.2 we show that the
same applies to the case ρ > 1. Each ε contained in the range D = [λa, λb] is
an eigenvalue of this system. In addition, system S∞ may have finite number of
discrete eigenvalues εs .

We call each discrete eigenvalue an isolated eigenvalue. Those isolated
eigenvalues are usually contained in the complement �D of the range D. As
shown in the Appendix A.2, there are at most ρ left isolated eigenvalues εL < λa
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and at most ρ right isolated eigenvalues εR > λb. Since each eigenvalue εI ∈ �D
is discrete, the corresponding eigenstate or eigenstates |ΨI 〉 can be normalized
to unity. This normalization is done in accord with the metrics induced by the
operator S. In this respect isolated eigenstates |ΨI 〉 are similar to the eigenstates
|Θs〉 ∈ Xa

ρ of the system Sa
ρ .

In addition to isolated eigenvalues εI ∈ �D, combined system S∞ may con-
tain some isolated eigenvalues εr ∈ D. As shown in the Appendix A.4.4, each
such eigenvalue coincides with some anomal point of the combined system. We
will discuss anomal and other characteristic points of the combined system in
section 3.4.2.

We call each eigenvalue ε ∈ D (that is not an isolated eigenvalue) an embed-
ded eigenvalue. This eigenvalue is part of a continuous band of eigenvalues, and
the corresponding eigenstates |Ψ(ε)〉 are normalized to a δ-function in accord
with the metrics induced by the operator S. In this respect embedded eigenstates
of the combined system are similar to the eigenstates |Φ(k)〉 of the system Sb

∞
that are also normalized to a δ-function.

3.1. Mathematical preliminaries

Eigenvalue equation (1a) that describes local system Sa
ρ can be solved in

any base {|χs〉} ∈ Xa
ρ . Given this base, there is a unique operator K acting in

Xa
ρ such that

〈

χs
∣
∣ K
∣
∣χp
〉 = δsp. (4a)

Since vectors |χs〉 form a complete set in Xa
ρ , this implies

ρ
∑

s

|χs〉 〈χs |K = Ia. (4b)

In the base {|χs〉} operators A and Sa are ρ × ρ matrices with matrix ele-
ments Asp and Sa

sp, respectively

Asp = 〈χs
∣
∣ A
∣
∣χp
〉

, Sa
sp = 〈χs

∣
∣ Sa

∣
∣χp
〉

, s, p = 1, . . . , ρ. (5)

In this base eigenvalue equation (1a) becomes a matrix eigenvalue equation.
For the sake of simplicity we will use the same notation for operators A and Sa

and their representations in this base.
As shown in the Appendix A, isolated and embedded solutions of the com-

bined system can be expressed in terms of the solutions to two ρ×ρ eigenvalue
equations. Those are generic and fractional shift eigenvalue equation. Besides
operators A and Sa with matrix elements (5), those equations involve character-
istic operator f(ε) and derived operator ω(ε). In analogy to operators A and Sa ,
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operators f(ε) and ω(ε) also act in the space Xa
ρ and in the base {|χs〉} they are

also represented by ρ×ρ Hermitian matrices. Characteristic operator f(ε) incor-
porates essential features of the infinite system Sb

∞ and of the interaction of this
system with the system Sa

ρ . This operator vanishes in the complement �D of D
and it is defined according to

f(ε) = V |Φ(k)〉 〈Φ(k)| V
dλ(k)/dk

∣
∣
ε=λ(k) ·

{

1 if ε ∈ D,
0 otherwise. (6a)

Matrix elements fsp(ε) = 〈χs
∣
∣ f(ε)

∣
∣χp
〉

of this operator are

fsp(ε) = 〈χs | V |Φ(k)〉 〈Φ(k) ∣∣ V
∣
∣χp
〉

dλ(k)
/

dk

∣
∣
ε=λ(k) ·

{

1 if ε ∈ D,
0 otherwise. (6b)

Those matrix elements can be expressed in terms of ρ functions as(ε)

fsp(ε) = a∗
s (ε)ap(ε), (6c)

where

as(ε) = 〈Φ(k) | V |χs 〉
√

dλ(k)/dk

∣
∣
ε=λ(k) ·

{

1 if ε ∈ D,
0 otherwise. s = 1, . . . , ρ. (6d)

Right-hand sides of (6a), (6b) and (6d) are evaluated in the point k that satisfies
ε = λ(k). Since λ(k) is an increasing function of k, derivative dλ/dk is nonneg-

ative and
√

dλ(k)
/

dk in (6d) is real.
For each ε ∈ D matrix f(ε) is either positive definite or zero. It is zero in a

trivial case when all quantities as(ε) (s = 1, . . . , ρ) vanish. Otherwise it is posi-
tive definite. In addition, (6c) implies that positive definite matrix f(ε) has rank
one. Hence all eigenvalues of this matrix vanish, except of only one eigenvalue
that may differ from zero. Eigenstates | fs(ε)〉 of f(ε) can be arranged in such a
way that they satisfy

f(ε) | fs(ε)〉 = ξs(ε) | fs(ε)〉 , (7a)

ξs(ε) = ξ1(ε)δs1, (7b)

where ξ1(ε) is the eigenvalue corresponding to the eigenstate | f1(ε)〉. Those ei-
genstates can be orthonormalized according to

〈

fs(ε)
∣
∣ f p(ε)

〉 = δsp, s, p = 1, . . . , ρ. (7c)

Using (6) one finds

ξ1(ε) =
ρ
∑

s

a∗
s (ε)as(ε) = T r (f(ε)) � 0, ε ∈ D, (7d)

where T r (f(ε)) is a trace of the operator f(ε).
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Since the system Sb
∞ contains a single one-parameter eigenvalue band,

characteristic matrix f(ε) has rank at most one. In more general cases not con-
sidered here, this matrix may have any rank � ρ and in such more general cases
expressions (7b) and (7d) do not apply [8].

For the sake of generality we allow for the possibility that f(ε) may be dis-
continuous in some point or points ed ∈ D. If this is the case there is at least
one matrix element fsp(ε) that is discontinuous in this point. For example, if the
infinite system Sb

∞ describes a solid, it may contain so-called van Hove singulari-
ties [3]. In such points matrix elements fsp(ε) may be discontinuous, or they may
even diverge. We denote the set of all points ed ∈ D where f(ε) is discontinuous
with Λ.

Unlike operator f(ε) that vanishes outside the range D, derived operator
ω(ε) is nonzero in all points outside D and in almost all points inside D. This
operator is expressed in terms of the characteristic operator f(ε) according to

ω(ε) = P
∫

f(λ)
ε − λ

dλ, (8a)

where P denotes principal Cauchy integral value [10]. If ε ∈ �D this is a standard
integral. However, if ε ∈ D subintegral function on the right-hand side of (8a)
may diverge in a point λ = ε. In this case one has to take a principal Cauchy
integral value of this integral.

Matrix elements ωsp(ε) of ω(ε) can be written in terms of the matrix ele-
ments fsp(ε) of f(ε) according to

ωsp(ε) = P
∫

fsp(λ)

ε − λ
dλ. (8b)

Those matrix elements can be also written in a more explicit form

ωsp(ε) = P

kb∫

ka

〈χs | V |Φ(k)〉 〈Φ(k) ∣∣ V
∣
∣χp
〉

ε − λ(k)
dk. (8c)

Since f(λ) is either positive definite or zero and since lim
ε→±∞ ω(ε) = 0, one

finds that for each ε ∈ �D an arbitrary (nontrivial) state |Θ〉 ∈ Xa
ρ satisfies

〈Θ | ω(±∞) |Θ〉 = 0, (9a)
〈

Θ
∣
∣ dω

/

dε |Θ 〉 < 0, ε ∈ �D. (9b)

Matrix ω(ε) is hence positive definite for each ε ∈ (λb,∞) and negative
definite for each ε ∈ (−∞, λa). In other words, each nontrivial state |Θ〉 ∈ Xa

ρ

satisfies
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〈Θ | ω(ε) |Θ〉 < 0 if ε ∈ (−∞, λa) and 〈Θ | ω(ε) |Θ〉 > 0 if ε ∈ (λb,∞) .

(9c)

If fsp(ε) is discontinuous in a point ed ∈ Λ, matrix element ωsp(ε) diverges
in this point [7]. The type of the singularity in this point depends on the nature
of discontinuity of fsp(ε). For example, if ed is left (right) edge of the interval D
and if right (left) limit value of fsp(ε) as one converges to this point is nonzero,
fsp(ε) is discontinuous in this point. In this case one finds

lim
ε→λa

ωsp(ε) = −∞, lim
ε→λb

ωsp(ε) = ∞.

Thus if ed = λa matrix element ωsp(ε) diverges to −∞ in this point, while if
ed = λb it diverges to +∞ in this point. One also finds that in the former case
left derivative ωsp′ (ε) = dωsp(ε)/dε of the corresponding matrix element con-
verges to −∞, while in a latter case right derivative of this matrix element con-
verges to −∞.

Operators A and Sa contain all information necessary for the description
of the isolated system Sa

ρ . As will be shown in following sections, characteristic
operator f(ε) contains all additional information necessary for the description of
this system subject to the interaction with the system Sb

∞. In order to construct
this operator it is not necessary to specify details of the infinite system Sb

∞ and
of the interaction of this system with finite system Sa

ρ . For this construction it is
sufficient to know ρ functions as(ε). There are many different systems Sb

∞ that
may produce the same functions as(ε). If the details of the system Sb

∞ and of
the interaction of this system with the system Sa

ρ are not known, one can model
those functions in such a way as to satisfy some required properties and/or some
known data of the combined system S∞.

3.2. Generic eigenvalue equation

Two equations are important for the solution of the combined system S∞.
First of those two equations is the “generic” equation

[

β2ω(εs)+ A
]

|θs〉 = εsSa |θs〉 . (10)

This is a nonlinear eigenvalue equation. It may have eigenvalues εI ∈ �D as
well as eigenvalues εr ∈ D. As shown in the Appendix A.3 and in the following
section, each eigenvalue εI ∈ �D of this equation is an isolated eigenvalue of the
combined system. In addition, eigenstate |θI 〉 ∈ Xa

ρ of (10) is proportional to the
Xa
ρ-component of the corresponding isolated eigenstate |ΨI 〉. Concerning eigen-

values εr ∈ D, those eigenvalues are so-called resonant points (see section 3.4.2)
and they are related to the embedded solutions of the combined system. In some
cases to be discussed later, those eigenvalues can be isolated eigenvalues of the
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combined system. Generic equation (10) thus describes many important features
of the combined system S∞.

Formally, generic equation (10) is eigenvalue equation (1a) perturbed with
the perturbation β2ω(ε). One can consider each eigenvalue εs of this equation
as a function of a coupling parameter β, i.e. εs ≡ εs(β). For each local eigen-
value Es , there is an eigenvalue εs(β) that in a limit β → 0 converges to Es .
If Es is κs-degenerate, there are κs such eigenvalues εs(β). Each such eigenvalue
can be considered as the eigenvalue Es of the isolated system Sa

ρ perturbed by
the interaction of this system with the infinite system Sb

∞. If β is relatively small
and if the operator ω(ε) is bounded in D, each eigenvalue εs of (10) is in this
way associated with some unperturbed eigenvalue Es . In this case there is one-
to-one correspondence between eigenstates |Θs〉 of the isolated system Sa

ρ and
eigenstates |θs〉 of the generic eigenvalue equation. Hence eigenvalue equation
(10) has exactly ρ eigenvalues and eigenstates. However and as emphasized in
the previous section, operator ω(ε) may diverge in some points ed ∈ Λ. In this
case equation (10) may have some additional eigenvalues εd ≡ εd(β), however
small the coupling β (see Appendix A.6). In the limit β → 0 each such addi-
tional eigenvalue converges to some point ed ∈ Λ where ω(ε) diverges, i.e. one
has εd(0) = ed . The point ed ∈ Λ may coincide with some local eigenvalue
Es ∈ D. If this is not the case (ed /∈ {Es}), the point εd(0) = ed is not an eigen-
value of (10) in the case β = 0, though εd(β) can be an eigenvalue of (10) for
each β > 0, however small.

In conclusion, if the coupling β is small, each eigenvalue εs of (10) can
be considered either as some local eigenvalue Es perturbed by the interac-
tion of the system Sa

ρ with the infinite system Sb
∞, and/or this eigenvalue

may be associated with some divergent point ed ∈ Λ off ω(ε). Concerning
those divergent points, of particular interest is the case when ω(ε) diverges on
the left (right) edge of the range D. In this case one may have one or sev-
eral isolated eigenvalues εI ∈ �D as well as one or several resonant points
εr ∈ �D that in a limit β → 0 converge to this edge of the range D.
In section 4.1 we will give an example of such eigenvalues and corresponding
eigenstates.

If the coupling β is not small, generic eigenvalue equation may have several
eigenvalues that are associated with the same point ed ∈ Λ. Such an example
will be given in section 4.1. There may be also some additional eigenvalues that
are associated neither with some the local eigenvalue Es nor with some point ed .
This is due to the fact that generic eigenvalue equation is not linear. Hence if
the coupling β is not small, the number of the eigenvalues to this equation can
exceed the dimension ρ of the space Xa

ρ , even in the case when operator ω(ε) is
bounded in the range D.
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3.3. Isolated eigenvalues εI ∈ �D and the corresponding eigenstates
of the combined system

In the Appendix A.3 we show that εI ∈ �D is an (isolated) eigenvalue of the
combined system if and only if it is a root of the equation

h(εI ) ≡
∣
∣
∣β

2ω(εI )+ A − εI Sa
∣
∣
∣ = 0, εI ∈ �D, (11)

where A and Sa are ρ×ρ matrices with matrix elements (5), while ω(ε) is a ρ×ρ
matrix with matrix elements (8b). Further, each normalized eigenstate |ΨI 〉 cor-
responding to this eigenvalue is of the form

|ΨI 〉 = 1√
QI

⎡

⎢
⎢
⎣

ρ
∑

s

C (I )
s |χs〉 + β

kb∫

ka

ρ∑

s
〈Φ(k) | V |χs 〉 C (I )

s

εI − λ(k)
|Φ(k)〉 dk

⎤

⎥
⎥
⎦
, (12a)

where

QI =
ρ
∑

sp

C (I )∗
s Sa

spC (I )
p + β2

λb∫

λa

∑

sp
C (I )∗

s fsp(λ)C
(I )
p

(εI − λ)2
dλ, (12b)

and where the coefficients C (I )
s are components of the vector C(I ) that is a non-

trivial solution of the matrix equation
[

β2ω(εI )+ A
]

C(I ) = εI SaC(I )
, εI ∈ �D. (12c)

Due to (4a) expression (12a) implies

C (I )
s = √QI 〈χs | K |ΨI 〉 . (12d)

Given an isolated eigenvalue εI , relation (12c) can have multiple solutions.
Degeneracy of this eigenvalue equals nullity of a matrix H(εI ) ≡ β2ω(εI )+ A −
εI Sa . By definition [11], this nullity equals number of the linearly independent
solutions C(I ) to the matrix equation (12c). Since this is a ρ × ρ matrix, an iso-
lated eigenvalue εI can be at most ρ-degenerate.

Isolated eigenstate (12a) is normalized in accord with a metrics induced by
the positive definite operator S, i.e. 〈ΨI | S |ΨI 〉 = 1. As shown in the Appendix
A.3, all isolated eigenstates can be orthonormalized according to

〈ΨI | S |ΨJ 〉 = δI J . (13)

This relation is automatically satisfied if isolated eigenvalues εI and εJ dif-
fer from each other, εI 	= εJ . However, in the case of degenerate isolated eigen-
states orthogonality (13) should be explicitly enforced. This can be done either
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by Gramm–Schmidt orthonormalization [11] or by any other orthonormalization
procedure.

Above expressions produce all isolated solutions that have eigenvalues
outside the range D. In order to find those solutions one has first to solve equa-
tion (11). Each solution εI ∈ �D of this equation is an isolated eigenvalue. Once
a particular isolated eigenvalue εI is found, the corresponding normalized eigen-
state(s) is given by (12a) and (12b) where the coefficients C (I )

s are obtained as a
solution of (12c).

One can write expressions (12) in a more compact form using generic eigen-
value equation. Isolated eigenstate |ΨI 〉 is a linear combination |ΨI 〉 = ∣

∣Ψa
I

〉 +
∣
∣Ψb

I

〉

where
∣
∣Ψa

I

〉 ∈ Xa
ρ and

∣
∣Ψb

I

〉 ∈ Xb∞. Equation (12c) is an eigenvalue equa-
tion for the component

∣
∣Ψa

I

〉

of |ΨI 〉. One easily finds that this equation is a
generic eigenvalue equation (10) as written in a matrix form. According to (12a),
if εI ∈ �D the corresponding eigenstate |θI 〉 of (10) is proportional to the compo-
nent

∣
∣Ψa

I

〉

of the isolated eigenstate |ΨI 〉 of the combined system. In particular
one has

∣
∣Ψa

I

〉 = 1√
QI

|θI 〉 , (14a)

where

QI = 〈θI
∣
∣ Sa |θI

〉− β2 〈θI | dω/dεI |θI 〉 . (14b)

Eigenstate |θI 〉 of (10) is related to the eigenvector C(1) of (12c) according
to

|θI 〉 =
ρ
∑

s

C (I )
s |χs〉.

Once εI ∈ �D and |θI 〉 are obtained as a solution of (10), one can derive
∣
∣Ψb

I

〉 ∈ Xb∞ according to

∣
∣
∣Ψ

b
I

〉

= β√
QI

kb∫

ka

〈Φ(k) | V |θI 〉
εI − λ(k)

|Φ(k)〉 dk. (14c)

Note that the components
∣
∣Ψa

I

〉

and
∣
∣Ψb

I

〉

of |ΨI 〉 are not normalized in
accord with a metrics induced by the operator S. In this way is normalized only
the complete eigenstate |ΨI 〉.

In conclusion, each eigenvalue εI ∈ �D of the generic equation is an isolated
eigenvalue of the combined system. The corresponding eigenstate |θI 〉 determines
Xa
ρ component of the isolated eigenstate |ΨI 〉 according to (14a) and (14b). In

addition, Xb∞ component of this eigenstate is determined according to (14c). In
this way generic equation determines all isolated eigenvalues εI ∈ �D and all the
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corresponding eigenstates |ΨI 〉. We shall discuss remaining eigenvalues εr ∈ D
and the corresponding eigenstates |θr 〉 of (10) in section 3.4.4.

3.3.1. Properties of isolated eigenvalues εI ∈ �D and of the corresponding
eigenstates

Consider now some characteristic properties of those solutions of (10) that
are associated with the isolated eigenvalues εI ∈ �D. As shown in the Appen-
dix A.2, one may have at most ρ left isolated eigenvalues εI ≡ εL < λa and
at most ρ right isolated eigenvalues εI ≡ εR > λa . Thus one may have as many
as 2ρ isolated eigenvalues εI ∈ �D. Further, in a metrics defined by the operator
S, probability to find isolated eigenstate |ΨI 〉 in a normalized state |Θ〉 ∈ Xa

ρ

(〈Θ | Sa |Θ〉 = 1) is a square |〈Θ | S |ΨI 〉|2 of the amplitude 〈Θ | S |ΨI 〉 ≡
〈

Θ
∣
∣ Sa

∣
∣Ψa

I

〉

. According to (14a) this amplitude equals

〈Θ | S |ΨI 〉 = 〈Θ | Sa |θI 〉√
QI

. (15)

In particular, probability wa
I s = |〈Θs | S |ΨI 〉|2 to find isolate eigenstate

|ΨI 〉 in the local state |Θs〉 ∈ Xa
ρ equals

wa
I s = 〈θI | Sa |Θs 〉 〈Θs | Sa |θI 〉

〈θI | Sa |θI 〉 − β2 〈θI | dω/dεI |θI 〉 . (16a)

Since local states |Θs〉 form a complete set in Xa
ρ , the probability wa

I to find
isolated eigenstate |ΨI 〉 in the system Sa

ρ , that is to find this eigenstate in any of
the states |Θ〉 ∈ Xa

ρ , equals wa
I =∑s w

a
I s . Hence and due to (1c)

wa
I ≡

ρ
∑

s

wa
I s ≡ 〈Ψa

I

∣
∣ Sa

∣
∣Ψa

I

〉 = 〈θI | Sa |θI 〉
〈θI | Sa |θI 〉 − β2 〈θI | dω/dεI |θI 〉 . (16b)

In a similar way, probability density ρI (k) to find isolated eigenstate |ΨI 〉 in
the state |Φ(k)〉 ∈ Xb∞ is a square of the amplitude 〈Φ(k) | S |ΨI 〉 ≡ 〈Φ(k) ∣∣ Ψb

I

〉

ρI (k) =
∣
∣
∣

〈

Φ(k)
∣
∣
∣ Ψ

b
I

〉∣
∣
∣

2
. (17a)

According to (14c) this amplitude equals
〈

Φ(k)
∣
∣
∣ Ψ

b
I

〉

= β√
QI

〈Φ(k) | V |θI 〉
(εI − λ(k))

. (17b)

Since the states |Φ(k)〉 form a complete set in Xb∞ the probability wb
I to find

isolated eigenstate |ΨI 〉 in the system Sb
∞ equals

wb
I =

∫

ρI (k) dk = β2

QI

∫ |〈Φ(k) | V |θI 〉|2
(εI − λ(k))2

dk. (17c)
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The state |ΨI 〉 should be found with certainty either in a system Sa
ρ or in

a system Sb
∞. Hence above probabilities must satisfy completeness requirement

wa
I +

∫

ρI (k)dk = 1. (18)

One can formally derive this expression from relations (14).
Each isolated eigenvalue εI ∈ �D can be considered as a function of the cou-

pling β as well as a function of local eigenvalues Es . One finds (see Appendix
A.5)

∂εI

∂β
= 2β 〈θI | ω(εI ) |θI 〉

〈θI | Sa |θI 〉 − β2
〈

θI
∣
∣ dω

/

dεI |θI
〉 , (19a)

∂εI

∂Es
= wa

I s � 0. (19b)

Above relations give the rate of change of the isolated eigenvalue εI with
a change of a coupling β and with a change of local eigenvalues Es . According
to (19a) and due to (9c), if the coupling β increases isolated eigenvalue εI moves
away from the interval D = [λa, λb]. Thus the effect of the coupling β is to repeal
each isolated eigenvalue away from this interval. According to (19b), derivative
∂εI
/

∂Es equals probability wa
I s = |〈Θs | S |ΨI 〉|2 to find isolate eigenstate |ΨI 〉

in the local state |Θs〉 ∈ Xa
ρ . In particular, if a local eigenvalue Es increases

(decreases), isolated eigenvalue εI also increases (decreases), i.e., it moves in the
same direction. In addition and due to (9b) one has 0 � ∂εI

/

∂Es < 1. One also
finds

wa
I =

ρ
∑

s

∂εI

∂Es
. (19c)

Consider finally the case when f(ε) is discontinuous on the edge λa or λb of
the range D. In this case ω(ε) as well as dω/dε diverges in this point [7] and by
definition the edge in question is contained in the set Λ. If isolated eigenvalue εI
is very close to this edge, dω/dεI is very large. Depending on the eigenstate |θI 〉
of (10), this usually implies that matrix element 〈θI | dω/dεI |θI 〉 has very large
negative value. Probabilities wa

I s and wa
I (equations (16)) are hence extremely

small. As a consequence, contributions of isolated solutions that are associated
with the discontinuity of f(ε) on the edge of the range D to various densities is
in this case negligible. In addition, as long as εI is close to the edge in question,
derivatives ∂εI /∂β and ∂εI /∂Es (equations (19)) are also extremely small. Under
those conditions εI ≡ εI (β) considered as a function of β is approximately con-
stant, i.e. it moves very slowly away from the edge in question. In section 4 we
will illustrate those properties with an example where λa ∈ Λ. In this case f(ε)
is discontinuous on the left edge λa of the range D and ω(ε) as well as dω/dε
diverge in the point ε = λa .
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3.3.2. Isolated solutions in the weak coupling limit
Standard perturbation expansion approach treats the case when the coupling

β is small [1, 2]. In this case and if EI ∈ �D is an interior point of the point-
set �D, relation (10) has a root εI ∈ �D that is close to ε = EI . If EI is non-
degenerate and if ω(ε) does not diverge in a point ε = EI , one finds εI ≈
EI + β2 〈ΘI | ω(EI ) |ΘI 〉 (see (A.32a)). This approximation has a structure of
the second order perturbation correction. Since

〈

χs
∣
∣ V
∣
∣χp
〉 = 0 there is no first

order correction. This result is in accord with the standard perturbation expan-
sion method that includes second order expansion terms [1, 2].

The case when f(ε) is discontinuous on some edge of the range D requires
a special treatment. In this case for each coupling β > 0 perturbation βω(ε)

is on this edge infinite. Hence standard perturbation expansion fails. Examining
expression (10) one finds that in this case combined system S∞ may contain an
isolated eigenvalue εL < λa(εR > λb), however small the coupling β > 0. For
example, if f(ε) is discontinuous in the point ε = λa and if lim

ε→λa+ f(ε) 	= 0 is

finite, one finds that for sufficiently small β generic equation (10) has eigenvalues
εs(β) ≈ λa ± A exp(−K/β2) where A > 0 and K > 0 are constants [8]. In par-
ticular, the eigenvalue εL(β) ≈ λa − A exp(−K/β2) < λa of (10) is a left isolated
eigenvalue of the combined system. For small β this eigenvalue is extremely close
to the point λa where f(ε) is discontinuous and according to the discussion in a
previous section, one has wI s ≈ 0. In conclusion, if f(ε) is discontinuous on the
edge λa (or λb) of the range D and if β is sufficiently small, the probability wI s
to find isolated eigenstate |ΨI 〉 associated with this edge in the local state |Θs〉
is negligible. An example of such an eigenvalue will be given in sections 4.1 and
4.2.

Note that above functions εs(β) are not analytic in the point β = 0 and
hence they can not be expressed as a power series expansion in this point. In
fact, in the limit β → 0 all derivatives of those functions are zero! This again
demonstrates that standard perturbation expansion fails in this point. In gen-
eral, standard perturbation expansion method should fail to reproduce all those
eigenvalues εs ≡ εs(β) of (10) that in a limit β → β0 converge to some point
εs(β0) ∈ Λ where ω(ε) diverges. A special case of this general result is a case
β0 = 0 and εs(β0) = λa (= λb).

3.4. Embedded eigenvalues and eigenstates of the combined system

Each ε ∈ D is an embedded eigenvalue of the combined system. The cor-
responding embedded eigenstate |Ψ(ε)〉 can be written as a linear combination
|Ψ(ε)〉 = |Ψa(ε)〉 + ∣∣Ψb(ε)

〉

where |Ψa(ε)〉 ∈ Xa
ρ and

∣
∣Ψb(ε)

〉 ∈ Xb∞. In a metrics
induced by the operator S, those eigenstates are orthonormalized to a δ-function
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according to
〈

Ψ(ε)
∣
∣ S
∣
∣Ψ(ε′)

〉 = δ(ε − ε′). (20a)

In addition, embedded eigenstates are orthogonal to all isolated eigenstates

〈Ψ(ε) | S |Ψs 〉 = 0, ε ∈ D. (20b)

A key quantity in the treatment of embedded solutions is a fractional shift
x(ε) [5–7]. One finds that this quantity is well defined almost everywhere in D.
There may exist only a finite number of isolated points where fractional shift
is ambiguous. Those are “anomal” points and in those points combined system
contains isolated eigenvalues and eigenstates (see section 3.4.2).

Fractional shift can be obtained from the eigenvalue of the fractional shift
eigenvalue equation to be considered in the following section. Once fractional
shift is known, one can express various quantities describing combined system
S∞ in terms of a fractional shift and in terms of the corresponding eigenstate
|ψ(ε)〉 of this equation. In particular, the component |Ψa(ε)〉 of the embedded
eigenstate |Ψ(ε)〉 can be expressed in this way.

We will first define fractional shift x(ε) and then we will derive fractional
shift eigenvalue equation that determines this quantity. Next the solution of this
equation will be considered. Using this solution, component |Ψa(ε)〉 ∈ Xa

ρ of the
normalized eigenstate |Ψ(ε)〉 will be derived.

3.4.1. Fractional shift and fractional shift eigenvalue equation
One arrives at the notion of the fractional shift in the following way:

Unperturbed infinite system Sb
∞ can be approximated to any desired degree

of accuracy with a huge but finite system Sb
n containing n eigenvalues λi and

n eigenstates |Φi 〉. This can be done in such a way that eigenvalues λi are
nondegenerate and locally equidistant (see Appendix A.2). For large enough n
those eigenvalues are densely distributed over the interval D = [λa, λb]. System
Sb

n interacts with the finite system Sa
ρ . Eigenvalues εk (k = 1, . . . , n + ρ) of the

corresponding combined system Sn+ρ = Sa
ρ ⊕ Sb

n are interlaced with the unper-
turbed eigenvalues λi according to [12]

εi � λi � εi+ρ, i = 1, . . . , n. (21)

Consider (n − ρ) quantities

x(εk) = εk − λk−1

λk − λk−1
, k = ρ + 1, ρ + 2, . . . , n. (22)

Each x(εk) is a fractional shift of the perturbed eigenvalue εk relative to the
unperturbed eigenvalue λk−1 [5–7]. In particular and due to the interlacing rule
(21), in the case ρ = 1 one has 0 � x(εk) � 1 [5–7]. In the limit n → ∞
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discrete quantities x(εk) converge to a function x(ε) of a continuous parameter
ε ∈ D. Fractional shift thus defined is the ratio of two infinitesimal quantities.
One should imagine an infinite number of unperturbed eigenvalues λi densely
distributed over the eigenvalue interval D = [λa, λb]. Perturbed eigenvalues εk
are also densely distributed over this interval. For each finite n there is a small
shift �εk = εk − λk−1 of the perturbed eigenvalue εk relative to the unperturbed
eigenvalue λk−1. Another small quantity is the interval �λk = λk −λk−1 between
two adjacent unperturbed eigenvalues. The n → ∞ limit of the ratio of those
two quantities is the fractional shift x(ε).

As shown in the Appendix A.4.3, for each ε ∈ D, except for the so-called
anomal points εa ∈ D, fractional shift is well defined and it is a solution of the
eigenvalue equation

H(ε) |ψ(ε)〉 = X (ε)f(ε) |ψ(ε)〉 , (23a)

where

H(ε) = β2ω(ε)+ A − ε Sa, (23b)

and where X (ε) = −πβ2 cot(πx(ε)), ε ∈ D. (23c)

We consider anomal points and other characteristic points of the combined
system in the following section.

We call equation (23a) a fractional shift equation. For each ε ∈ D this is
a generalized eigenvalue equation with eigenvalue(s) X (ε) and with the corre-
sponding eigenstate(s) |ψ(ε)〉. Eigenvalue X (ε) of this equation determines frac-
tional shift x(ε) according to (23c). As shown in the Appendix A.4.1, fractional
shift is confined to the interval [1 − ρ, 1]

1 − ρ � x(ε) � 1. (24)

Since for each integer m one has cot (π(x(ε)+ m)) = cot (πx(ε)), expres-
sion (23c) determines fractional shift up to an additive integer constant. None of
other quantities to be derived in this paper is sensitive to this constant. Hence
one can confine fractional shift x(ε) to the interval [0, 1). We will call frac-
tional shift confined to this interval a principal value of a fractional shift. If
required, exact value of the fractional shift can be obtained using the continu-
ation argument, i.e. imposing the condition that fractional shift x(ε) should be
a continuous function of ε. This method can be generalized to include anomal
points where fractional shift is not defined [8]. Unless otherwise specified, we will
assume that the fractional shift is confined to its principal value.

Consider now eigenstate |ψ(ε)〉 of the fractional shift equation. As shown
in the Appendix A.4.2, in conjuncture with the fractional shift x(ε) this ei-
genstate determines Xa

ρ-component |Ψa(ε)〉 of the embedded eigenstate |Ψ(ε)〉
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according to

∣
∣Ψa(ε)

〉 = sin (πx(ε))

πβ
√〈ψ(ε) | f(ε) |ψ(ε)〉 |ψ(ε)〉 . (25a)

Using (23c) one can express sin (πx(ε)) in terms of the eigenvalue X (ε) of
the fractional shift equation

sin (πx(ε)) = πβ2
√

π2β4 + (X (ε))2
, ε ∈ D. (25b)

Component |Ψa(ε)〉 ∈ Xa
ρ of |Ψ(ε)〉 determines all properties of the system

Sa
ρ that interacts with the system Sb

∞. Hence, as far as embedded solutions of
the combined system are concerned, fractional shift equation provides complete
description of the system Sa

ρ that interacts with the system Sb
∞.

3.4.2. Characteristic points of the combined system
In a base {|χs〉} ∈ Xa

ρ fractional shift equation (23a) is a ρ×ρ matrix eigen-
value equation (A.14a). Standard ρ×ρ eigenvalue equation involving Hermitian
matrices has ρ eigenvalues and ρ orthonormalized eigenstates. However, frac-
tional shift equation is a generalized eigenvalue equation with Hermitian opera-
tor f(ε) on the right-hand side of this equation. Since this operator has rank at
most one, the number of linearly independent eigenstates that this equation may
have substantially decreases.

According to (25a), Xa
ρ-component |Ψa(ε)〉 of the embedded eigenstate

|Ψ(ε)〉 of the combined system is proportional to the eigenstate |ψ(ε)〉 of a frac-
tional shift equation. It is possible for the embedded eigenstate |Ψ(ε)〉 to contain
no Xa

ρ-component. In this case trivial solution |ψ(ε)〉 = 0 of the fractional shift
equation is allowed. However, if the eigenstate |ψ(ε)〉 of the combined system
contains Xa

ρ-component, only nontrivial solutions |ψ(ε)〉 	= 0 of this equation
should be considered. It is important to determine necessary and sufficient con-
ditions for the existence of trivial solutions of the fractional shift equation.

General properties of the solutions to the fractional shift equation, such as
number of those solutions and admissibility of a trivial solution, can be ana-
lyzed in terms of characteristic points ε ∈ D. Those are singular, critical and res-
onant points. In addition, of interest are also points ed ∈ Λ where operator ω(ε)

diverges.
Singular points ε0 ∈ D correspond to singular solutions of the combined

system. Those solutions were first defined in the case of a finite combined sys-
tem Sn+ρ [12]. By definition, eigenvalue εk of a finite combined system Sn+ρ
is singular if it coincides with some eigenvalue λi of the corresponding unper-
turbed system Sb

n. Otherwise it is cardinal. As shown in the Appendix A.4.1,
one can generalize the distinction between singular and cardinal solutions to the
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infinite combined system S∞ [5–7]. One finds that fractional shift x(ε) = 0
corresponds to a singular solution, while all other (noninteger) values of frac-
tional shift correspond to cardinal solutions. Each singular point ε0 ∈ D satis-
fies x(ε0) = 0 and it describes perturbed eigenvalue that in the limit n → ∞
coincides with some unperturbed eigenvalue (see Appendix A.4). According to
(23c), the point x(ε0) = 0 corresponds to the eigenvalue X (ε0) = ±∞ of the
fractional shift equation. This eigenvalue is not a proper eigenvalue of (23a) and
singular solutions thus appear as limit quantities to “standard” solutions of the
fractional shift equation. If lim

ε→ε0
X (ε)f(ε) |ψ(ε)〉 is well defined and finite and if

lim
ε→ε0

X (ε) = ±∞, one has a singular solution in a point ε = ε0. In this way

fractional shift equation, in addition to cardinal solutions, contains also singular
solutions. According to (25a), in a singular point ε0 ∈ D one has |Ψa(ε0)〉 = 0,
unless 〈ψ(ε0) | f(ε0) |ψ(ε0)〉 = 0. In this latter case the correct expression is
obtained as a limit |Ψa(ε0)〉 = lim

ε→ε0
|Ψa(ε)〉.

Second type of characteristic points are critical points εc ∈ D. In a criti-
cal point operator f(ε) vanishes, i.e. f(εc) = 0. As explained in section 3.1, for
almost all ε ∈ D rank of f(ε) equals one. Exception are critical points (if any)
where this rank equals zero and where as(εc) = 0 for each s = 1, . . . , ρ.

According to expressions (6), operator f(ε) incorporates essential features
of the interaction between the state |Φ(k)〉 ∈ Xb∞ (ε = λ(k)) and the system Sa

ρ .
Since in a critical point ε = εc one has f(εc) = 0, the state |Φ(kc)〉 where εc =
λ(kc) does not interact with any state of the system Sa

ρ . This state is hence an ei-
genstate of the combined system S∞. This eigenstate has no Xa

ρ component, and
hence in a critical point trivial solution |ψ(εc)〉 = 0 of the fractional shift equa-
tion is allowed. However, if ε is not a critical point, the state |Φ(k)〉 (ε = λ(k))
interacts with at least one state in Sa

ρ . In this case one finds that |Ψ(ε)〉 con-
tains a nontrivial Xa

ρ-component. In conclusion, in a critical point trivial solu-
tion |ψ(ε)〉 = 0 of the fractional shift equation is allowed. If the point ε is not
critical, only nontrivial solutions of this equation are permitted.

Third type of characteristic points are resonant points. In a resonant point
εr ∈ D operator H(εr ) is singular. Hence there is at least one nontrivial state
|θ〉 ∈ Xa

ρ such that H(εr ) |θ〉 = 0. We denote the set of all resonant points
εr ∈ D with Ξ. We also define a special type of resonant points, so-called anomal
points. The point εr is anomal if there is a nontrivial state |θ〉 ∈ Xa

ρ that satis-
fies f(εr ) |θ〉 = 0 in addition to H(εr ) |θ〉 = 0. If it is important to emphasize
that resonant point εr ∈ Ξ is anomal, we will denote this point with εr ≡ εa .
We call each resonant point εr that is not an anomal point, a proper resonant
point. Anomal points are important since in those points the combined system
has isolated eigenstates (see Appendix A.4.4). Each degenerate resonant point
is an anomal point. This follows from the fact that operator f(ε) has rank at
most one. In more general cases not considered here, rank of f(ε) can assume
any value � ρ and degenerate resonant points are not necessarily anomal [8]. In
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general, one finds that if the rank of f(εr ) is κr , than each (κr + 1)-degenerate
resonant point must be anomal [8].

In addition to the distinction between proper and anomal resonant points,
it is also convenient to distinguish between active and passive resonant points.
By definition, resonant point εr is active if there is at least one state |θ〉 ∈ Xa

ρ

that satisfies f(εr ) |θ〉 	= 0 in addition to H(εr ) |θ〉 = 0. Otherwise it is passive.
One easily finds that each passive resonant point is anomal. One also finds that
a nondegenerate active resonant point is not anomal, i.e. it is a proper resonant
point. Significance of resonant points is discussed in more details in the follow-
ing two sections.

3.4.3. General properties of the solutions to the fractional shift equation
Let us analyze general properties of the solutions to the fractional shift

equation in terms of the above characteristic points. The main distinction is
between resonant points εr ∈ D and points ε ∈ D that are not resonant.

Consider first the point ε ∈ D that is not a resonant point (ε /∈ Ξ). In such
a point operator H(ε) is regular, and it has an inverse H−1(ε). Equation (23a)
is hence equivalent to

|ψ(ε)〉 = X (ε)H−1(ε)f(ε) |ψ(ε)〉 , (26a)

There are two further possibilities, the point ε /∈ Ξ is either a critical point
or it is not a critical point. In the later case operator f(ε) has rank one. Since
H−1(ε) is regular the product H−1(ε)f(ε) has also rank one. Up to the nor-
malization constant this product must be a projection operator on some state
|ζ(ε)〉 ∈ Xa

ρ . Hence and due to (26a) eigenstate |ψ(ε)〉 of (23a) must be propor-
tional to |ζ(ε)〉, i.e. |ψ(ε)〉 ∝ |ζ(ε)〉. This implies that fractional shift equation
has exactly one nontrivial eigenstate. Further, since ε /∈ Ξ is not a critical point,
trivial solution is not allowed. Assume namely |ψ(ε)〉 = 0. In this case the state
|Φ(k)〉 ∈ Xb∞ where ε = λ(k) must be an eigenstate of the combined system.
However, since f(ε) 	= 0 there is an interaction between this state and the finite
system Sa

ρ . Hence this state can not be an eigenstate of the combined system.
This proves that the assumption |ψ(ε)〉 = 0 is wrong. Since |ψ(ε)〉 	= 0 expres-
sion (26a) implies X (ε) 	= 0 and hence x(ε) 	= 0.5.

Consider now critical point εc /∈ Ξ. As explained in a previous section,
in this point Xa

ρ-component of the embedded eigenstate |Ψ(εc)〉 vanishes. Hence
|ψ(εc)〉 = 0. This conclusion is consistent with fractional shift equation (23a).
In a critical point one has f(εc) = 0 and right-hand side of this equation equals
zero. However, since H(εc) is regular, each nontrivial state |ψ〉 	= 0 (|ψ〉 ∈ Xa

ρ)

satisfies H(εc) |ψ〉 	= 0. This implies |Ψ(εc)〉 = 0. Since in a critical point there
is no interaction between the state |Ψ(εc)〉 ∈ Xb∞ and the system Sa

ρ , fractional
shift x(εc) associated with this eigenstate must be zero. The corresponding solu-
tion is hence singular. There is also a possibility that some local eigenvalue Es
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may coincide with the critical point, Es = εc. If this is the case, and since |Ψ(εc)〉
does not interact with |Θs〉, eigenvalue Es = εc is degenerate. Degenerate eigen-
states corresponding to this eigenvalue are |Ψ(εc)〉 ∈ Xb∞ and |Θs〉 ∈ Xa

ρ .
Consider now the solution of a fractional shift equation in a resonant point

εr ∈ Ξ. In this point there is a nontrivial state |θ〉 ∈ Xa
ρ that satisfies H(εr ) |θ〉 =

0. For this state fractional shift equation (23a) reduces to

X (εr )f(εr ) |θ〉 = 0. (26b)

An obvious solution to this equation is X (εr ) = 0 and |ψ(εr )〉 ≡
|θ〉. The corresponding fractional shift is x(εr ) = 0.5. This solution always
exists. However, if the resonant point εr is anomal, there is a nontrivial state
|θ〉 ∈ Xa

ρ that satisfies f(εr ) |θ〉 = 0 in addition to H(εr ) |θ〉 = 0. In this
case fractional shift equation (23a) is satisfied with the state |ψ(εr )〉 ≡ |θ〉
with an arbitrary eigenvalue X (εr ). Hence fractional shift x(εr ) can assume any
value admissible by the condition (24). Since 〈ψ(εr ) | f(εr ) |ψ(εr )〉 = 0 and
according to the expression (25a), each noninteger fractional shift x(εr ) pro-
duces an infinite value for the component |Ψa(εr )〉. This divergence indicates
the existence of the isolated eigenstate in the point εr [8]. In conclusion, in
an anomal point the combined system has one or several isolated eigenstates.
On the other hand, if the resonant point εr is not anomal, fractional shift
equation has a unique solution and the corresponding fractional shift equals
x(εr ) = 0.5.

To summarize the above discussion, in each point ε ∈ D that is not an ano-
mal point fractional shift equation has one and only one physically acceptable
solution. In this case there is only one fractional shift x(ε) and (up to the nor-
malization and phase) only one eigenstate |ψ(ε)〉 of this equation. In particular,
if ε ∈ D is not resonant one has x(ε) 	= 0.5, while if ε = εr is a proper res-
onant point one has x(εr ) = 0.5. Hence fractional shift x(ε), considered as a
continuous function of ε ∈ D, can cross the value x(ε) = 0.5 only in a resonant
point. Further, if ε is not a critical point, the corresponding eigenstate |Ψ(ε)〉 of
the combined system has a nontrivial Xa

ρ-component |Ψa(ε)〉 	= 0. In this case
fractional shift equation has a nontrivial solution |ψ(ε)〉 	= 0. However, if ε is a
critical point (ε = εc), eigenstate |Ψ(εc)〉 of the combined system has no com-
ponent in the space Xa

ρ . In this case fractional shift equation has only a trivial
solution |ψ(εc)〉 = 0. In addition, in a critical point one has x(εc) = 0 and the
corresponding solution is singular.

Situation is different if εr is an anomal point. In this case fractional shift
as determined by the equation (23a) is not well defined and it can assume any
value consistent with the requirement (24). As a consequence, the combined sys-
tem contains one or several isolated eigenstates in this point.
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3.4.4. Resonant eigenvalue equation
By definition, in the resonant point εr ∈ D operator H(εr ) is singular. This

point is hence an eigenvalue of the eigenvalue equation

[

β2ω(εr )+ A
]

|θr 〉 = εr Sa |θr 〉 , εr ∈ D. (10′)

This equation is generic eigenvalue equation (10) restricted to the range D.
As shown in section 3.3, each eigenvalue εI ∈ �D of the generic eigenvalue equa-
tion is an isolated eigenvalue of the combined system. This eigenvalue is con-
tained outside the range D. The corresponding eigenstate is given by expressions
(14a) and (14b). On the other hand, each eigenvalue εr ∈ D of this equation
is contained inside the range D. If the interaction between the systems Sa

ρ and
Sb

∞ is relatively weak, most solutions of the equation (10′) have a simple physical
interpretation. Let Er ∈ D be a nondegenerate eigenvalue of (1a). Let further Er
be an interior point in the range D, i.e. Er is not on a boundary of this range.
If the coupling β is sufficiently small, equation (10′) has an eigenvalue εr (β) ∈ D
that in a limit β → 0 converges to Er . This eigenvalue can be identified with the
eigenvalue Er ∈ D of the local system Sa

ρ shifted to the position εr by the inter-
action of this system with the infinite system Sb

∞. One finds (see section 3.4.7)
that if β is sufficiently small, each active eigenvalue εr (β) ∈ D of (10′) that is
associated with a nondegenerate eigenvalue εr (0) = Er and which in addition
satisfies Er /∈ Λ defines a universal resonance curve [13]. This curve has the max-
imum at ε = εr , it has a finite width �εr and the area under this curve equals
unity. Similar result is obtained if Er is κr -degenerate where κr > 1. In this case
one may have as many as κr eigenvalues εs(β) of (10′) that in a limit β → 0 con-
verge to Er . In general, those eigenvalues do not generate universal resonance
curve and some of them may be anomal. However, each of those eigenvalues can
be still considered as the eigenvalue Er perturbed by the interaction of the sys-
tem Sa

ρ with the infinite system Sb
∞. In view of those properties we call equation

(10′) where eigenvalues εr ∈ D are confined to the range D a resonant eigenvalue
equation and we call each eigenvalue εr ∈ D of this equation a resonant point
(see section 3.4.2).

As emphasized in section 3.2, if ω(ε) is not bounded in the range D, equa-
tion (10′) may have some additional eigenvalues εr ∈ D that in the limit β → 0
converge to some point ed ∈ Λ where ω(ε) diverges. One finds that those addi-
tional eigenvalues do not generate a universal resonant curve.

If the coupling β is not small, eigenvalue distribution of the system Sa
ρ in

the interaction with the system Sb
∞ may be so distorted that any interpretation

of the resonant points εr as the perturbed eigenvalues Er of the system Sa
ρ

becomes meaningless (see section 4.3 and figure 8). Also and as emphasized
in section 3.2, the combined system may contain some resonant points that
are associated neither with unperturbed eigenvalues Er , nor with some point
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ed where ω(ε) diverges. Though in the case of the strong coupling resonance
interpretation of the eigenvalues εr of the eigenvalue equation (10′) is usually
inadequate, those eigenvalues and the corresponding eigenstates still play an
important role in connection with the solutions of the fractional shift equation.
In particular and as explained in a previous section, if εr is an anomal point
there is an isolated eigenstate of the combined system in this point, however
strong the coupling β (see section 4.4).

3.4.5. Solution of the fractional shift equation in the base {|φs(ε)〉}
Let us now consider in more details solution of a fractional shift equation.

For the sake of simplicity and unless otherwise specified, we will assume that
operator ω(ε) is bounded in D, i.e. we assume that the set Λ is empty.

One can solve equation (23a) in any base {|χs〉} ∈ Xa
ρ . However, particularly

convenient is the base {|χs〉} ≡ {|φs(ε)〉} containing eigenstates of the eigenvalue
equation

[

β2ω(ε)+ A
]

|φs(ε)〉 = ηs(ε)Sa |φs(ε)〉 . (27a)

Those eigenstates can be orthonormalized according to
〈

φs(ε)
∣
∣ Sa

∣
∣φp(ε)

〉 = δsp, s, p = 1, . . . , ρ. (27b)

Eigenstates |φs(ε)〉 and the corresponding eigenvalues ηs(ε) depend on ε

and on a parameter β. For each ε (and for each parameter β) there are ρ ort-
honormalized eigenstates |φs(ε)〉 and ρ corresponding eigenvalues ηs(ε). One can
consider eigenvalue equation (27a) for each real ε. However, in connection with
the embedded eigenstates of the combined system, of particular interest is the
solution of this equation in the case ε ∈ D.

Eigenvalue equation (27a) is related to the generic eigenvalue equation (10).
Each eigenvalue εr of (10) satisfies ηs(εr ) = εr for at least one s = 1, . . . , ρ. It
is convenient to denote with Ξr the set of all indices s such that ηs(εr ) = εr . If
the eigenvalue εr of (10) is κr -degenerate, there are κr such indices and κr corre-
sponding functions ηs(ε). One can orthonormalize the corresponding eigenstates
|θs〉 of (10) in such a way that they satisfy

〈

θs
∣
∣ Sa

∣
∣θp
〉 = δsp, |θs〉 = |φs(εr )〉 , s, p ∈ Ξr . (27c)

Though equations (10) and (27a) are related, they are substantially differ-
ent. For each ε equation (27a) is an eigenvalue equation that has ρ orthonor-
malized eigenstates |φs(ε)〉 and ρ corresponding eigenvalues ηs(ε). On the other
hand, generic equation (10) is a nonlinear eigenvalue equation and it may have
the solution only for some isolated points ε = εs . Eigenstates |θs〉 of this equa-
tion are usually not orthogonal to each other and this equation may have more
than ρ distinct eigenvalues and eigenstates.
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Consider now the solution of the fractional shift equation (23a) in the base
{|φs(ε)〉}. Eigenstate |ψ(ε)〉 of this equation can be expressed as a linear combi-
nation

|ψ(ε)〉 =
ρ
∑

s

Cs(ε) |φs(ε)〉. (28a)

Orthonormality (27b) implies

Cs(ε) = 〈φs(ε)
∣
∣ Sa |Ψ(ε) 〉 . (28b)

This is expression (A.14c) applied to the base {|φs(ε)〉}.
Let us denote quantities as(ε) and fsp(ε) as expressed in the base {|φs(ε)〉}

with αs(ε) and Fsp(ε), respectively:

αs(ε) = 〈Φ(k) | V |φs(ε)〉
√

dλ(k)
/

dk

∣
∣
∣
∣
ε=λ(k)

·
{

1 if ε ∈ D,
0 otherwise, (29a)

Fsp(ε) = α∗
s (ε)αp(ε) ≡ 〈φs(ε)

∣
∣ f(ε)

∣
∣φp(ε)

〉

. (29b)

If ε ∈ D is not a resonant point (ε /∈ Ξ), one has ηs(ε) 	= ε for each s =
1, . . . , ρ. As shown in the Appendix A.4.3, in this case fractional shift equation
has a unique solution

X (ε) = − 1
ρ∑

p

α∗
p(ε)αp(ε)

ε−ηp(ε)

, x(ε) = 1
π

tg−1

(

−πβ
ρ
∑

p

α∗
p(ε)αp(ε)

ε − ηp(ε)

)

, (30a)

and

|ψ(ε)〉 =
ρ
∑

s

α∗
s (ε)

ε − ηs(ε)
|φs(ε)〉, ε /∈ Ξ. (30b)

According to (30b), if ε /∈ Ξ is not a critical point, one has |ψ(ε)〉 	= 0
while if ε = εc is a critical point one has αs(εc) = 0 (s = 1, . . . , ρ) and frac-
tional shift equation has only a trivial solution |ψ(ε)〉 = 0. In addition, since
ηs(ε) 	= ε (s = 1, . . . , ρ) eigenvalue X (ε) is nonzero. Hence x(ε) 	= 0.5. Further,
if all ηs(ε) and all αs(ε) are continuous functions of ε, fractional shift x(ε) is
also a continuous function of ε. One also finds that the solution (30) is singular
(x(ε) = 0) if and only if

ρ
∑

p

α∗
p(ε)αp(ε)

ε − ηp(ε)
= 0, ε /∈ Ξ. (31)
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In particular, in a critical point ε = εc /∈ Ξ one has a singular solution and
one finds x(εc) = lim

ε→εc
x(ε) = 0.

If ε = εr is a resonant point (εr ∈ Ξ), fractional shift equation can have
several solutions (see Appendix A.4.3). Among those solution there is always a
“standard” solution which equals the ε → εr limit of the solution (30). There
is also a solution that satisfies x(εr ) = 0.5 which may (but need not) coincide
with a standard solution. In particular, if the resonant point εr is active, there
is at least one p ∈ Ξr such that αp(εr ) 	= 0, and fractional shift of a standard
solution equals 0.5:

x(εr ) = lim
ε→εr

x(ε) = 0.5. (32a)

Concerning the eigenstate (30b), this eigenstate diverges in a limit ε → εr .
However, fractional shift equation (23a) defines this eigenstate only up to the
norm and phase. If one neglects this norm, one finds that the eigenstate (30b)
converges to the standard eigenstate |ψ(εr )〉. If for each s ∈ Ξr the derivative
η′

s(εr ) of a function ηs(ε) satisfies η′
s(εr ) 	= 1, one finds

|ψ(εr )〉 ∝ lim
ε→εr

|ψ(ε)〉 ∝
∑

s∈Ξr

α∗
s (εr )

1 − η′
s(εr )

|φs(εr )〉, εr ∈ Ξ, (32b)

where ∝ indicates proportionality (norm is neglected).
Since standard solution (32) satisfies x(εr ) = 0.5, it corresponds to the case

when perturbed eigenvalue εr is situated exactly in the middle between two adja-
cent infinitesimally close unperturbed eigenvalues. This is exactly opposite to the
case x(ε) = 0 when the perturbed eigenvalue ε equals unperturbed eigenvalue
and when the solution is singular.

If a resonant point ε = εr is not anomal, it is necessarily active and non-
degenerate. In this case standard solution is the only solution of the fractional
shift equation and up to the norm one finds

|ψ(εr )〉 ∝ lim
ε→εr

|ψ(ε)〉 ∝ |φr (εr )〉 ≡ |θr 〉 . (33)

In (32) and (33) we have assumed that εr is active. Slightly more compli-
cated expressions are obtained if εr is passive. In particular, if εr is passive but
not critical there is at least one s /∈ Ξr such that αs(εr ) 	= 0 and one finds

lim
ε→εr

X (ε) = − 1
∑

s /∈Ξr

α∗
s (εr )αs(εr )

εr −ηs(εr )

, lim
ε→εr

x(ε) = 1
π

tg−1

⎛

⎝πβ
∑

s /∈Ξr

α∗
s (εr )αs(εr )

εr − ηs(εr )

⎞

⎠ ,

(34a)
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while if εr ≡ εc is passive and critical one has

lim
ε→εc

X (ε) = X (εc) = ∞, lim
ε→εc

x(ε) = x(εc) = 0. (34b)

In both cases as ε → εr fractional shift x(ε) converges to a particular solution of
the family of possible solutions. This is a “standard” solution. Unlike the case of
active resonant points where standard solution satisfies x(εr ) = 0.5, in the case
of passive resonant point standard solution satisfies x(εr ) 	= 0.5.

If the point εr is anomal, besides standard solution there are many addi-
tional solutions (see Appendix A.4.3). One finds that active resonant point is
anomal if and only if it is degenerate, while passive resonant point is always ano-
mal.

Above we have considered the solution of the fractional shift equation in
a base {|φs(ε)〉}. This base is convenient for theoretical considerations, especially
for the discussion of the weak coupling limit which provides a link with a stan-
dard perturbation expansion approach (see section 3.4.7). Another convenient
base for this solution is the set {| fs(ε)〉} of the orthonormalized eigenstates of
the operator f(ε). This base is more convenient numerically. Unlike the base
{|φs(ε)〉} that depends on the coupling β, the base {| fs(ε)〉} does not depend
on β. In addition, with the choice {| fs(ε)〉} one can efficiently exploit the fact
that the rank of the operator f(ε) is at most one. This may significantly simplify
numerical aspects of the solution. For the sake of simplicity we omit the consid-
eration of this base here [8].

3.4.6. Component |Ψa(ε)〉 ∈ Xa
ρ of the embedded eigenstate |Ψ(ε)〉

Once fractional shift x(ε) and the eigenstate |ψ(ε)〉 of a fractional shift
equation are known, one can obtain component |Ψa(ε)〉 ∈ Xa

ρ of the normal-
ized eigenstate |Ψ(ε)〉 of the combined system. Inserting the solution (30) into
(25) one finds

∣
∣Ψa(ε)

〉 =
ρ
∑

s

∣
∣Ψa

s (ε)
〉

, (35a)

where

∣
∣Ψa

s (ε)
〉 = β

√
√
√
√1 + π2β4

(
ρ∑

p

Fpp(ε)

ε−ηp(ε)

)2

α∗
s (ε)

ε − ηs(ε)
|φs(ε)〉 , ε /∈ Ξ. (35b)

In the above expression |φs(ε)〉 are eigenstates of (27a) orthonormalized
according to (27b). Since αs(ε) is zero outside the range D, one has

∣
∣Ψa

s (ε)
〉 = 0

if ε /∈ D. As required, component |Ψa(ε)〉 of the embedded eigenstate |Ψ(ε)〉 van-
ishes outside the range D. In addition, in a critical point ε = εc /∈ Ξ one has
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αs(εc) = 0 for each s ∈ 1, . . . , ρ. Hence |Ψa(ε)〉 vanishes also in a critical point

∣
∣Ψa(εc)

〉 = lim
ε→εc

∣
∣Ψa(ε)

〉 = 0, εc /∈ Ξ.

In all other points ε /∈ Ξ one has |Ψa(ε)〉 	= 0. This is in accord with our
general discussion in section 3.4.3.

Expression (35) is valid for each ε ∈ D that is not a resonant point. As
shown in a previous section, if ε = εr is a resonant point one may have multiple
solutions. Among those solutions there is always a “standard” solution that can
be obtained as the ε → εr limit of the solution (35). Two cases are possible; the
point εr is either active or passive.

If εr is active, there is at lest one s ∈ Ξr such that αs(εr ) 	= 0. In this case

lim
ε→εr

∣
∣Ψa(ε)

〉 = ∣∣Ψa(εr )
〉 =

∑

s∈Ξr

∣
∣Ψa

s (εr )
〉

, εr ∈ Ξ, (36a)

where

lim
ε→εr

∣
∣Ψa

s (ε)
〉= ∣∣Ψa

s (εr )
〉= 1

πβ
∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

α∗
s (εr )

1 − η′
s(εr )

|φs(εr )〉
{

1 if s ∈ Ξr ,

0 otherwise. (36b)

In the above expression one assumes η′
s(εr ) 	= 1 for each s ∈ Ξr . One easily

derives corresponding expression for some rare cases when there is s ∈ Ξr such
that η′

s(εr ) = 1.
According to (27c) each state |φs(εr )〉 ≡ |θs〉 (s ∈ Ξr ) is an eigenstate of the

resonant eigenvalue equation (10′). Component |Ψa(εr )〉 of the standard eigen-
state |Ψ(εr )〉 is hence a linear combination of only those eigenstates |θs〉 of (10′)
that satisfy s ∈ Ξr . In particular, if the resonant point εr is not anomal, standard
solution is the only solution in this point. In this case εr must be nondegenerate
and one finds

lim
ε→εr

∣
∣Ψa(ε)

〉 = ∣∣Ψa(εr )
〉 = 1

πβαr (εr )
|θr 〉 , εr ∈ Ξ, (36c)

where eigenstate |θr 〉 of (10′) is normalized according to 〈θr | S |θr 〉 = 1.
Above expressions apply to the case when εr is active. According to (32a) in

this case fractional shift satisfies x(εr ) = 0.5. Slightly more complicated expres-
sions are obtained if εr is passive. According to (34) in this case fractional shift
satisfies x(εr ) 	= 0.5.

Once |Ψa(ε)〉 is known, one easily derives all properties of a system Sa
ρ that

interacts with the infinite system Sb
∞. In the metrics induced by the operator S
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norm of the state
∣
∣Ψa

s (ε)
〉

can be defined as

ρs(ε) ≡ 〈Ψa
s (ε)

∣
∣ S
∣
∣Ψa

s (ε)
〉 = β2

1 + π2β4

(
ρ∑

p

Fpp(ε)

ε−ηp(ε)

)2

Fss(ε)

(ε − ηs(ε))
2
. (37a)

Above expression follows from (35b) and from the orthonormality (27b).
One finds that norm ρs(ε) equals probability density to find the state |φs(ε)〉 in
the eigenstate |Ψ(ε)〉 of the combined system:

ρs(ε) = ∣∣〈φs(ε)
∣
∣ Sa |Ψ(ε) 〉∣∣2 . (37b)

Of more practical interest are probability densities ρa
s (ε) to find local states

|Θs〉 in the eigenstate |Ψ(ε)〉 of the combined system. In a metrics induced by
the operator Sa those probability densities equal

ρa
s (ε) = ∣∣〈Θs

∣
∣ Sa |Ψ(ε) 〉∣∣2 . (38a)

Since |Ψ(ε)〉 has the eigenvalue ε, quantity ρa
s (ε) is a probability density to

find local state |Θs〉 with the eigenvalue ε ∈ D. In conjuncture with isolated
eigenstates |ΨI 〉 and corresponding probabilities wa

I s , density ρa
s (ε) determines

eigenvalue distribution of a state |Θs〉 when the system Sa
ρ is not isolated but

when it interacts with the system Sb
∞ (see section 3.5). One finds

ρa
s (ε)=

β2

1 + π2β4

(
ρ∑

p

Fpp(ε)

ε−ηp(ε)

)2

∣
∣
∣
∣
∣

ρ
∑

p

α∗
p(ε)

ε − ηp(ε)

〈

Θs
∣
∣ Sa

∣
∣φp (ε)

〉

∣
∣
∣
∣
∣

2

, ε /∈ Ξ.

(38b)

One can also consider probability density ρa(ε) to find the system Sa
ρ in

the eigenstate |Ψ(ε)〉, i.e. to find any of the states |Θs〉 ∈ Xa
ρ with the eigen-

value ε. In a metrics induced by the operator S this probability density equals
〈Ψa(ε) | S |Ψa(ε)〉 ≡ 〈Ψ(ε) | Sa |Ψ(ε)〉. By definition, this is the norm of the
component |Ψa(ε)〉 ∈ Xa

ρ of the embedded eigenstate |Ψ(ε)〉. Since the states
|Θs〉 as well as the states |φs(ε)〉 are orthonormalized in accord with the met-
rics induced by the operator S, this probability density equals the sum

∑

s ρ
a
s (ε)

as well as the sum
∑

s ρs(ε). Hence

ρa(ε) ≡
ρ
∑

s

ρa
s (ε) ≡

ρ
∑

s

ρs(ε) = 〈Ψa(ε)
∣
∣ Sa

∣
∣Ψa(ε)

〉

. (39a)
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Using any of the expressions (35), (37a) or (38b), in all three cases one finds

ρa(ε) = β2

1 + π2β4

(
ρ∑

s

Fss(ε)
ε−ηs(ε)

)2

ρ
∑

s

Fss(ε)

(ε − ηs(ε))
2
, ε /∈ Ξ. (39b)

In particular, if and only if ε = εc /∈ Ξ is a critical point this probability
density vanishes

ρa(εc) = lim ρa(ε)
ε→εc

= 0, εc /∈ Ξ. (39c)

Above densities apply to each ε ∈ D that is not a resonant point.
Consider now the case ε = εr ∈ Ξ. If εr is active, corresponding standard
component |Ψa(εr )〉 is given by (36). Using this expression one finds standard
probability densities ρs(εr ) and ρa

s (εr )

lim
ε→εr

ρs(ε) = ρs(εr ) =
Fss(εr )

(1−η′
s(εr ))

2

π2β2

(

∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

)2

⎧

⎨

⎩

1 if s ∈ Ξr ,

0 if s /∈ Ξr ,

(40a)

lim
ε→εr

ρa
s (ε) = ρa

s (εr ) =
Fss (εr )

(1−η′
s (εr ))

2

π2β2

(

∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

)2

∣
∣
∣
∣
∣
∣

∑

p∈Ξr

α∗
p(εr )

1 − η′
p(εr )

〈

Θs
∣
∣ Sa

∣
∣φp(εr )

〉

∣
∣
∣
∣
∣
∣

2

. (40b)

Both expressions imply

lim
ε→εr

ρa(ε) = ρa(εr ) =
∑

s∈Ξr

Fss(εr )

(1−η′
s(εr ))

2

π2β2

(

∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

)2
, εr ∈ Ξ. (40c)

As already emphasized, expressions (40) are valid provided η′
p(εr ) 	= 1 for

each s ∈ Ξr .
If the resonant point εr is nondegenerate, above expressions reduce to

ρs(εr ) = δs,r

π2β2 Frr (εr )
, ρa

s (εr ) = |〈Θs | Sa |φr (εr )〉|2
π2β2 Frr (εr )

,

ρa(εr ) = 1
π2β2 Frr (εr )

. (41)
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Since εr is active, this is a proper resonant point. The solution (41) is hence
unique.

As explained in section 3.4.3, if the resonant point εr is anomal, fractional
shift x(εr ) can assume any value consistent with (24). Densities ρs(εr ) and ρa

s (εr )

in this point are hence not unique. Only one of those densities, a standard den-
sity equals the ε → εr limit of the solution in the neighborhood of εr . Remaining
densities correspond to one or several isolated eigenstates in this anomal point.
Those densities have the shape of the weighted δ-function and they require a spe-
cial treatment [8].

3.4.7. Component |Ψa(ε)〉 in the weak coupling limit
According to (35) component |Ψa(ε)〉 ∈ Xa

ρ of the embedded eigenstate
|Ψ(ε)〉 is a sum of ρ states

∣
∣Ψa

s (ε)
〉 ∈ Xa

ρ . Each state
∣
∣Ψa

s (ε)
〉

is associated with
some local eigenvalue Es and with the corresponding eigenstate |Θs〉. Let us now
consider this component in the case of small β. As shown in the Appendix A.6,
if the state

∣
∣Ψa

s (ε)
〉

is associated with the local eigenvalue Es ∈ �D that is an inte-
rior point in �D and if β is sufficiently small, this state is negligible. Hence in the
case of small β only those states

∣
∣Ψa

s (ε)
〉

that are associated with local eigenval-
ues Es ∈ D contribute to |Ψa(ε)〉. We shall now consider those states in more
details.

Let Er ∈ D be κr -degenerate and let Er be an interior point in D. In this
case there are κr resonant points εs and κr functions ηs(ε) that in a limit β → 0
converge to Er . Those resonant points and those functions are not necessarily
mutually distinct and some of them may coincide. We shall write s ∈ Zr if εs ≡
εs(β) satisfies εs(0) = Er . Otherwise we shall write s /∈ Zr . If the operator ω(ε)

does not diverge in the point ε = Er and if β is sufficiently small, each state
∣
∣Ψa

s (ε)
〉

associated with local eigenvalue Er has the form (see Appendix A.6)

∣
∣Ψa

s (ε)
〉 ≈ ∣∣Ψa

s (ε)
〉◦ = β

√
√
√
√1 + π2β4

(

∑

p∈Zr

Fpp(εp)

ε−εp

)2

α∗
s (εs)

ε − εs
|φs(ε)〉 , s ∈ Zr ,

(42a)

where symbol (◦) indicates that this expression is valid for small β. Note that
∣
∣Ψa

s (ε)
〉 ≈ 0 if αs(εs) = 0. In particular, if εs is passive one has

∣
∣Ψa

s (ε)
〉◦ = 0.

According to (A.33b) one has also |φs(ε)〉 = |Θs〉 + O(β2) ≈ |Θs〉. The state
∣
∣Ψa

s (ε)
〉

is hence essentially proportional to |Θs〉. We shall however retain more
general form |φs(ε)〉 in the above expression.

The interaction of the system Sb
∞ with the system Sa

ρ may either completely
or only partially remove the degeneracy of Er . Hence each resonant point εs (s ∈
Zr ) may be still degenerate. If this is the case it is convenient instead of a single
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state
∣
∣Ψa

s (ε)
〉◦ to consider the sum

∣
∣
∣Ψa

(s)(ε)
〉◦

of all those states that are associated
with the same degenerate resonant point εs

∣
∣
∣Ψ

a
(s)(ε)

〉◦ =
∑

p∈Ξs

∣
∣
∣Ψ

a
p(ε)

〉◦
, s ∈ Zr . (42b)

This state is nonzero if the resonant point εs is active, otherwise it is zero.
If Er is nondegenerate there is only one εr (β) with a property εr (0) = Er .

In this case (42a) and (42b) reduce to

∣
∣Ψa

r (ε)
〉 ≈ ∣∣Ψa

r (ε)
〉◦ ≡

∣
∣
∣Ψ

a
(r)(ε)

〉◦ = β α∗
r (εr )

√

(ε − εr )
2 + π2β4 Frr (εr )2

|φr (ε)〉 . (42c)

Again,
∣
∣Ψa

r (ε)
〉

is negligible if the resonant point εr is passive (in which case
one has αr (εr ) = 0).

In the above expressions it was assumed that Er is an interior point in the
range D. According to (35b) one has

∣
∣Ψa

s (ε)
〉 = 0 if ε /∈ D. However, if Er

is an interior point in D and if β is sufficiently small, those expressions satisfy
∣
∣Ψa

s (ε)
〉◦ ≈ 0 if ε /∈ D. On the other hand, if Er coincides with the edge of

the range D (Er = λa or Er = λb), each resonant point εs (s ∈ Zr ) in a limit
β → 0 converges to this edge and the property

∣
∣Ψa

s (ε)
〉 ≈ 0 if ε /∈ D does not fol-

low from (42). In such (rare) cases expressions (42) are still valid, provided one
includes the condition

∣
∣Ψa

s (ε)
〉 = 0 (ε /∈ D) into those expressions. However, if

Er is an interior point in D, explicit inclusion of this condition is not necessary.
According to the above discussion, if ω(ε) is everywhere bounded and if β

is small, each resonant point εs ≡ εs(β) in a limit β → 0 converges to some
local eigenvalue Er ∈ D and one has εs(0) = Er . However, operator ω(ε) may
diverge in some points ed ∈ Λ inside the range D, while outside this range it
must be bounded. In this case generic eigenvalue equation (10) may have some
additional eigenvalues εd ≡ εd(β) that in a limit β → 0 converge to some
point εd(0) ≡ ed ∈ Λ where operator ω(ε) is singular. Expressions (42) hence
need some corrections. Each resonant point εs ≡ εs(β) in those expressions sat-
isfies εs(0) = Er . If Λ is nonempty one may have either εs(0) = Er ∈ Λ or
εs(0) = Er /∈ Λ. In the former case ω(ε) diverges in Er and expressions (42) fail
[8]. However, coincidence of εs(0) = Er with εd(0) ∈ Λ is rare. Hence we will
not consider such cases here [8]. In the latter case expressions (42) are still valid
for each ε ∈ D, except in some small intervals containing those resonant points
εd(β) that satisfy εd(0) ∈ Λ and εd(0) 	= Er . One could incorporate those cor-
rections directly into expressions (42). However, it is more convenient to resolve
this problem in another way. Instead of to associate states

∣
∣Ψa

s (ε)
〉

with local
eigenvalues Er , one can associate those states with resonant points εs . From this
point of view there are states

∣
∣Ψa

s (ε)
〉

associated with resonant points εs ≡ εs(β)

that satisfy εs(0) = Er /∈ Λ, and there are also some additional states
∣
∣Ψa

d(ε)
〉
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associated with resonant points εd ≡ εd(β) that satisfy εd(0) ∈ Λ. Those addi-
tional states absorb all necessary corrections. In conclusion, with each resonant
point εs ≡ εs(β) we associate a state

∣
∣Ψa

s (ε)
〉

. If this resonant point in a limit
β → 0 converges to local eigenvalue εs(0) ≡ Er /∈ Λ, this state is correctly given
by expression (42a). However, if in this limit εs ≡ εs(β) converges to εs(0) ∈ Λ

and if in addition εs(0) differs from all local eigenvalues (εs(0) /∈ {Er }), the state
∣
∣Ψa

s (ε)
〉

is not approximated by the expression (42a) [8]. One finds that such a
state is negligible for each ε ∈ D, except for those values of ε that are con-
tained in some extremely small interval close to the point εs(0) ∈ Λ. In partic-
ular, in a limit β → 0 integral of the norm of such a state converges to zero
(see expression (47)). Hence each state

∣
∣Ψa

s (ε)
〉

that is associated with a resonant
point εs ≡ εs(β) and which satisfies εs(0) ∈ Λ and εs(0) /∈

{

E p
}

can be neglected.
Consider now the norm ρs(ε) = 〈

Ψa
s (ε)

∣
∣ Sa

∣
∣Ψa

s (ε)
〉

of the state
∣
∣Ψa

s (ε)
〉

.
Expression (42a) implies

ρs(ε) ≈ ρ0
s (ε) = β2

1 + π2β4

(

∑

p∈Zr

Fpp(εp)

ε−εp

)2

Fss(εs)

(ε − εs)
2
, s ∈ Zr . (43a)

Norm ρ0
s (ε) approximates density ρs(ε) (expression (37)) in the case of

small β. Functional form of approximate density ρ0
s (ε) is quite interesting. First

one finds that passive resonant points εp (p ∈ Zr ) do not contribute to this den-
sity. This density depends only on active resonant points εp (p ∈ Zr ) and on the
corresponding quantities Fpp(εp). Further, this density vanishes in each active
resonant point εp that differs from εs . In other words one has ρ0

s (εp) = 0 if εp
is active and if εp 	= εs . As implied by (40a), this is an exact property valid for
each β. In addition, between any two mutually distinct active resonant points εp
and εp′ (εp 	= εp′) there is a point ε = ε0 such that the sum in the denomina-
tor of (43a) vanishes. In this point one has ρ0

s (ε0) = β2 Fss(εs)/ (ε0 − εs)
2. Since

εs = Er + O(β2) the quantity (ε0 − εr ) is of the order O(β2). This implies that
ρ0

s (ε0) is of the order O(β−2). Hence if β is sufficiently small density ρ0
s (ε) has

a sharp pick in the point ε = ε0. One may have several mutually distinct active
resonant points εp and several such picks between those resonant points. In con-
clusion, density ρ0

s (ε) may contain several picks that are spaced close to the local
eigenvalue Er .

If the resonant point εs is degenerate, instead of a single density (43a) it is
convenient to consider total density ρ(s)(ε) associated with this point. One has

ρ(s)(ε) ≡
∑

p∈Ξs

ρp(ε) =
〈

Ψa
(s)

∣
∣
∣ Sa

∣
∣
∣Ψ

a
(s)(ε)

〉

≈ ρ0
(s)(ε), (43b)
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where

ρ0
(s)(ε) = β2

1 + π2β4

(

∑

p∈Zr

Fpp(εp)

ε−εp

)2

∑

p∈Ξs
Fpp(εs)

(ε − εs)
2

, s ∈ Zr . (43c)

Density ρ0
(s)(ε) is associated with (in general degenerate) resonant point

εs ≡ εs(β) that in a limit β → 0 converges to a local eigenvalue Er /∈ Λ. Accord-
ing to the above expression, if εs is passive one has ρ0

(s)(ε) = 0. However, if εs

is active one has ρ0
(s)(ε) 	= 0 for each ε ∈ D, except when ε = εp is another

active resonant point that satisfies p ∈ Zr and εp 	= εs . In this latter case one
has ρ0

(s)(εp) = 0. In addition, the area of the density ρ0
(s)(ε) associated with the

active resonant point equals unity [8]. Hence
∫

ρ0
(s)(ε)dε =

{

1 if εsactive,
0 otherwise, s ∈ Zr . (44a)

According to (44a) total area due to all densities ρp(ε) that are associated
with a local eigenvalue Er ∈ D equals the number of mutually distinct and active
resonant points εs ≡ εs(β) that satisfy εs(0) = Er . Since this can not exceed
degeneracy κr of the local eigenvalue Er , one finds

∑

s∈Zr

∫

ρ0
s (ε)dε � κr . (44b)

Equality in the above expression is obtained if and only if all resonant
points εs that are associated with local eigenvalue Er (s ∈ Zr ) are active and non-
degenerate. In this case all such resonant points are proper resonant points and
there is no anomal point associated with this local eigenvalue.

In the following section we will show that expression (44a) is in accord with
the completeness requirements. In fact, one can derive this expression from those
requirements carefully following the transition to the limit β → 0. However, this
is quite convolute derivation of this expression.

If Er is nondegenerate and if Frr (εr ) 	= 0 above expressions simplify. In this
case resonant point εr ≡ εr (β) that satisfies εr (0) = Er is a proper resonant point
and expressions (43) reduce to

ρr (ε) ≈ ρ0
r (ε) = β2 Frr (εr )

(ε − εr )
2 + π2β4 F2

rr (εr )
. (45a)

This also follows from (42c). Density ρ0
r (ε) approximates density ρr (ε)

(equation (37)) in the case of small β and in the case when Er is nondegenerate.
Considered as a function of ε, ρ0

r (ε) is a universal resonance curve [13]. This is
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a bell shaped curve with a maximum ρmax
r in a resonant point ε = εr , with the

width �εr , and with a unite area:

ρmax
r = ρ0

r (εr ) = 1
π2β2 F2

rr (εr )
, �εr = 2πβ2 Frr (εr ), (45b)

∫

ρ0
r (ε)dε = 1. (45c)

Expression (45c) is a special case of the expression (44a).
Consider now quantities εr and Fss(εr ) (s ∈ Ξr ) that appear in the above

expressions. Concerning resonant point εr one has εr = Es + O(β2). In partic-
ular, if Er ∈ D is nondegenerate, resonant point ε = εr can be approximated
as

εr ≈ Er + β2 〈Θr | ω(Er ) |Θr 〉 , (46a)

(see Appendix A.5). Concerning quantities Fss(εr ) one has

Fss(εr ) = 〈Θs | f(Es) |Θs 〉 + O(β2). (46b)

In the above expressions we have assumed that ω(ε) is regular in the point
ε = Er , i.e. Er /∈ Λ. If Er ∈ Λ operator ω(ε) diverges in ε = Er and in this case
one can not obtain resonant point εr (s ∈ Zr ) by a standard perturbation expan-
sion. In particular, approximation (46a) fails and the state

∣
∣Ψa

s (ε)
〉

is not given by
expression (42a). Further, if Er ∈ Λ is nondegenerate density ρ0

r (ε) has not the
shape of the universal resonance curve (45a). However, if Er is an interior point
of the range D and if it is degenerate, density ρ0

r (ε) still has a unite area and
expression (45c) still holds [8]. Finally, resonant point εs ≡ εs(β) may in the limit
β → 0 converge to the point εs(0) = ed ∈ Λ that differs from all local eigen-
values E p. In this case the corresponding state

∣
∣Ψa

s (ε)
〉

may satisfy |Ψs(ε)〉 	= 0
in some immediate vicinity of the resonant point εs . However, if β is small global
contribution of the corresponding density ρs(ε) is negligible and one finds [8]

∫

ρs(ε)dε ≈ 0, if lim
β→0

εs(β) = ed ∈ Λ and ed /∈
{

E p
}

. (47)

Due to (47) one can neglect global contribution to the density ρa(ε) of all
those resonant points εr that are not associated with some local eigenvalue E p.
It is however feasible that in some cases those contributions, though globally
negligible, might be of some interest.

Above we have considered densities ρs(ε) in the case of small β. Accord-
ing to (37b) density ρs(ε) is a probability density to find a state |φs(ε)〉 in the
embedded eigenstate |Ψ(ε)〉 of the combined system. More important from this
density is probability density ρa

s (ε) = |〈Θs | Sa |Ψ(ε)〉|2 to find local state |Θs〉 in
the embedded eigenstate |Ψ(ε)〉. Since |Ψ(ε)〉 has the eigenvalue ε, density ρa

s (ε)



552 T.P. Živković / Interaction of a finite quantum system

in conjuncture with probabilities wa
I s determines spectral (eigenvalue) distribu-

tion of the state |Θs〉 when the system Sa
ρ is not isolated but when it interacts

with the system Sb
∞ (see section 3.5). According to (A.33), if β is small one has

|φs(ε)〉 = |Θs〉 + O(β2). Hence

ρa
s (ε) = ρs(ε)+ O(β2) ≈ ρs(ε). (48)

In a small coupling limit densities ρs(ε) and ρa
s (ε) coincide. Hence all the

above expressions apply to densities ρa
s (ε) as well as to densities ρs(ε). In par-

ticular, if local eigenvalue Er is nondegenerate, the interaction with the sys-
tem Sb

∞ shifts this eigenvalue to a new position εr (expression (46a)). If εr is
active this eigenvalue broadens and assumes the shape of the universal resonance
curve (expression (45a)). This curve is a spectral distribution of a nondegenerate
state |Θs〉 that interacts with the infinite system Sb

∞. This reproduces well-known
result from the standard perturbation expansion method [1].

3.4.8. Emergence of resonance in the case when the coupling β is large
In a previous section it was shown that in the case when β is small den-

sity ρa(ε) =∑s ρ
a
s (ε) =∑s ρs(ε) exhibits strong resonance in the neighborhood

of each active resonant point εs ∈ D that in a limit β → 0 converges to some
local eigenvalue Er . In particular, if Er is nondegenerate and if ω(ε) is not sin-
gular in this point, density ρa(ε) has close to this point the shape of the uni-
versal resonance curve with the unit area. According to (45b), as β decreases,
the height ρmax

r of this curve increases, its width �εr decreases, and overall res-
onance structure becomes more and more prominent. On the other hand, if β
increases, resonance structure in most cases becomes less and less prominent
until it is completely lost. However, there are some exceptional cases when den-
sity ρa(ε) may still contain sharp resonant picks, even when β is not small. We
will now discuss such cases.

Let εr ∈ D be an active resonant point and let εr /∈ Λ. Assume that β is
not small. If η′

p(εr ) 	= 1 for each p ∈ Ξr and if εr is an interior point in D, one
can approximate the state |Ψa(ε)〉 ∈ Xa

ρ in some small neighborhood � of this
resonant point according to (see Appendix A.7)

∣
∣Ψa

(ε)
〉 ≈

∣
∣
∣Ψa

(r)(ε)
〉

≈ β
√
√
√
√(ε − εr )

2 + π2β4

(

∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

)2

∑

s∈Ξr

α∗
s (εr )

1 − η′
s(εr )

|φs(ε)〉 , (49a)

where the state
∣
∣
∣Ψ

a
(r)(ε)

〉

=
∑

s∈Ξr

∣
∣Ψa

s (ε)
〉

(49b)
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is associated with a resonant point ε = εr . Probability density ρa(ε) equals norm
of the state |Ψa(ε)〉 and it can be approximated as

ρa(ε) ≈ ρ1
(r)(ε) = β2

(ε − εr )
2 + π2β4

(

∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

)2

∑

s∈Ξr

Fss(εr )
(

1 − η′
s(εr )

)2
, ε ∈ �. (49c)

Above expressions apply to an arbitrary β which may be very large. How-
ever, those expressions are valid only within a small interval � that contains res-
onant point εr . Within this interval one has αs(ε) ≈ αs(εr ) and ηs(ε) ≈ ηs(εr )+
η′

s(εr ) (ε − εr ). As |ε − εr | decreases expressions (49) are more and more reliable
and in the point ε = εr they are exact. In particular, according to (40c) one has

ρa(εr ) = ρ1
(r)(εr ). (49d)

However, as |ε − εr | increases those expressions deteriorate and if |ε − εr | >
� they are no more reliable. Formally, the function ρ1

(r)(ε), which approximates
probability density ρa(ε) in the interval �, is proportional to the universal res-
onance curve centered at the position ε = εr where it has its maximum value
ρ1
(r)(εr ) ≡ ρa(εr ). At the position where ρ1

(r)(ε) has half of its maximum value,
it has the width �ε(r). One finds:

ρ1
(r)(εr ) = 1

π2β2

(

∑

p∈Ξr

Fpp(εr )

1−η′p(εr )

)2

∑

s∈Ξr

Fss(εr )

(1−η′
s(εr ))

2 , (50a)

�ε(r) = 2πβ2 F(r)(εr ), where F(r)(εr ) = ∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

. (50b)

If β is not small the width �ε(r) of the universal resonance curve ρ1
(r)(ε) is

usually much larger than the interval �, i.e. �ε(r) >> �. Since approximation
(49c) fails if |ε − εr | > �, not much can be implied about the resonance struc-
ture of the density ρa(ε). However, if the quantity F(r)(εr ) is sufficiently small
one may have �ε(r) < �, even in the case when the coupling β is not small. In
this case in a small neighborhood � of the point ε = εr density ρa(ε) displays
a prominent shape of the universal resonance curve ρ1

(r)(ε) with a small width
�ε(r) and with the area

∫

ρ1
(r)(ε)dε = 1

∑

p/∈Ξr

Fpp(εr )

1−η′
p(εr )

∑

s∈Ξr

Fss(εr )
(

1 − η′
s(εr )

)2
. (50c)

According to the expressions (29), the quantity F(r)(εr ) is small if in the
point ε = εr eigenstates |φs(εr )〉 ≡ |θs〉 ∈ Xa

ρ (s ∈ Ξr ) of the resonant eigen-
value equation interact very weakly with the state |Φ(k)〉 ∈ Xb∞ where εr = λ(k).
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In conclusion, expression (50c) makes sense only if the quantity F(r)(εr ) is suffi-
ciently small. In section (4) will be given an example of such a resonance struc-
ture.

Consider now quantities Fss(εr ) and η′
s(εr ) that are needed in the above

expressions. Using (27c), (29b) and (A.36a) one finds

Fss(εr ) = 〈θs | f(εr ) |θs 〉 , η′
s(εr ) = β2 〈θs

∣
∣ ω′(εr ) |θs

〉

, s ∈ Ξr . (51)

According to (9b) one has
〈

θ
∣
∣ ω′(ε) |θ 〉 < 0 for each ε /∈ D and for each

nontrivial |θ〉 ∈ Xa
ρ . On the other hand, if ε ∈ D one may have

〈

θ
∣
∣ ω′(ε) |θ 〉 <

0 as well as
〈

θ
∣
∣ ω′(ε) |θ 〉 > 0 (see figure 2b). However, in a special case when

〈θ | f(ε) |θ 〉 = 0 one finds
〈

θ
∣
∣ ω′(ε) |θ 〉 < 0 [8]. If f(ε) is reasonably smooth in

the point ε ∈ D this implies
〈

θ
∣
∣ ω′(ε) |θ 〉 < 0 if 〈θ | f(ε) |θ 〉 is relatively small,

i.e. if 〈θ | f(ε) |θ 〉 ≈ 0. Since in the above case F(r)(εr ) is small, one must have
Fss(εr ) ≈ 0 (s ∈ Ξr ). Hence

〈

θs
∣
∣ ω′(εr ) |θ s

〉

< 0 for each s ∈ Ξr [8]. One thus
finds η′

s(εr ) < 0 (s ∈ Ξr ). Since Fpp(ε) � 0 this implies
∫

ρ1
(r)(ε)dε < 1. (50d)

If the resonant point ε = εr is nondegenerate, expressions (49) and (50)
reduce to

|Ψa(ε)〉 ≈ βα∗
r (εr )

√

(1−η′
r (εr ))

2
(ε−εr )

2+π2β4(Frr (εr ))
2
|φr (ε)〉 , (52a)

ρa(ε) ≈ ρ1
(r)(ε) = β2 Frr (εr )

(

1 − η′
r (εr )

)2
(ε − εr )

2 + π2β4 Frr (εr )2
, ε ∈ �, (52b)

ρ1
(r)(εr ) = 1

π2β2 Frr (εr )
, �ε(r) = 2πβ2 Frr (εr )

1−η′
r (εr )

, (53a)

∫

ρ1
(r)(ε)dε = 1

1 − η′
r (εr )

< 1. (53b)

It is instructive to compare expressions (49–53) valid for each β with
expressions (42–46) valid in the case of small β. First, note that expressions
(42–46) apply to each ε ∈ D, while expressions (49–53) apply only to a small
interval � containing active resonant point εr . In particular, expression (50c) for
the area of the curve (49b) makes sense if and only if the width �ε(r) of this
curve as calculated according to (50b) is sufficiently small. Further, if β is small
and if Es ∈ D is nondegenerate and active, the area associated with the corre-
sponding resonance curve equals unity (equation (45c)), while in the case when
β is not small, the area associated with nondegenerate active resonant point εr is
less than unity (expression (53b)). Similar difference applies to a degenerate case
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(compare expressions (44a) and (50d)). Mathematically, this difference is mainly
due to the fact that in a small coupling limit one has η′

s(ε) ≈ 0 and expressions
(49–53) accordingly simplify.

One final point. Density ρ1
(r)(ε) is approximate norm of the state

∣
∣
∣Ψa

(r)(ε)
〉

in a small interval � at the resonant point εr . In this interval the state
∣
∣
∣Ψa

(r)(ε)
〉

approximates component |Ψa(ε)〉 of the embedded eigenstate |Ψ(ε)〉. Hence:

ρ1
(r)(ε) ≈ ρa(ε) =

ρ
∑

s

ρa
s (ε) =

ρ
∑

s

ρs(ε) ≈
∑

s∈Ξr

ρs(ε), ε ∈ �, (54)

where ρs(ε) is a probability density to find eigenstate |φs(ε)〉 of (27a) with the
eigenvalue ε. Since β is not small this probability density differs from the prob-
ability density ρa

s (ε) to find local state |Θs〉 with the eigenvalue ε, i.e. unlike (48)
one has in general ρs(ε) 	= ρa

s (ε).

3.5. Eigenvalue distributions of local states |Θs〉 ∈ Xa
ρ

Each state |Ψ(ε)〉 with the eigenvalue ε ∈ D is an embedded eigenstate of
the combined system, while each state |ΨI 〉 with the eigenvalue εI ∈ �D is an iso-
lated eigenstate of this system. If this system contains no anomal points, those
eigenstates form a complete set in the space X∞ of the combined system. Hence
an arbitrary state |Ω〉 ∈ X∞ can be written as a linear combination of those
eigenstates. In particular, each state |Θ〉 ∈ Xa

ρ can be written as a linear combi-
nation

|Θ〉 =
∑

I

〈

Ψa
I

∣
∣ Sa |Θ 〉 |ΨI 〉 +

∫ λb

λa

〈

Ψa(ε)
∣
∣ Sa |Θ 〉 |Ψ(ε)〉 dε, (55a)

where coefficients
〈

Ψa
I

∣
∣ Sa |Θ 〉 and 〈Ψa(ε) | Sa |Θ〉 can be obtained from (14)

and (35), respectively. If in the combined system S∞ one measures the eigenvalue
of the state |Θ〉, one obtains the value εI ∈ �D with the probability

∣
∣
〈

Θ
∣
∣ Sa

∣
∣Ψa

I

〉∣
∣
2

and the value ε ∈ D with the probability density |〈Θ | Sa |Ψa(ε)〉|2. Those quan-
tities define eigenvalue profile or eigenvalue (spectral) distribution of the state
|Θ〉. This state must be found with a certainty either with some eigenvalue ε ∈ D
or with some eigenvalue εI ∈ �D. Hence

∑

I

∣
∣
〈

Θ
∣
∣ Sa

∣
∣Ψa

I

〉∣
∣2 +

∫
∣
∣
〈

Θ
∣
∣ Sa

∣
∣Ψa(ε)

〉∣
∣2 dε = 1. (55b)

This expression formally follows from (55a), from the normalization
〈Θ | Sa |Θ〉 = 1 of the state |Θ〉 and from the orthonormalities (13) and (20)
of the isolated and embedded eigenstates. Of particular interest is the case when
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|Θ〉 = |Θs〉 is a local state. One is usually interested how original eigenvalues
Es and the corresponding eigenstates |Θs〉 of the isolated system Sa

ρ are mod-
ified by the interaction of this system with the infinite system Sb

∞. Eigenvalue
distribution of the local state |Θs〉 that interacts with the system Sb

∞ is given
by probabilities wa

I s = ∣
∣
〈

Θs
∣
∣ Sa

∣
∣Ψa

I

〉∣
∣
2 and by probability density ρa

s (ε) =
|〈Θs | Sa |Ψa(ε)〉|2. In accord with (55b) one has

∑

I

wa
I s +

∫

ρa
s (ε)dε = 1, s = 1, . . . , ρ, (56a)

where probabilities wa
I s are given by (16a), while probability densities ρa

s (ε) are
given by (38b). Since ρa(ε) =∑s ρ

a
s (ε) while wa

I =∑s w
a
I s and since the system

Sa
ρ contains ρ states |Θs〉, this implies

wI
a

∑

I

+
∫

ρa(ε)dε = ρ, (56b)

where probabilities wa
I are given by expression (16b) while probability density

ρa(ε) is given by expression (39b).
Relations (56) are completeness relations. As emphasized above, those rela-

tions are valid provided the system S∞ contains no anomal point. If this sys-
tem contains some anomal points εr ≡ εa ∈ D, expressions (56) should include
additional terms. Each such additional term is due to isolated eigenstate of the
combined system with the eigenvalue in the corresponding anomal point.

3.5.1. Eigenvalue distribution of local states in the weak coupling limit
In the case when the coupling β is small eigenvalue distribution of local

states |Θs〉 simplifies. In this case due to the interaction with the system Sb
∞ each

eigenvalue Es of the system Sa
ρ is only slightly shifted to a new position. This is

a small shift that is at most of the order O(β2). Consider first the case when
the system S∞ contains no anomal points. In this case each shifted eigenvalue
εr ∈ D is nondegenerate and active resonant point. According to (43a) and (44a)
this shifted eigenvalue is broadened and it has unit area. In particular, if the cor-
responding eigenvalue Es is nondegenerate, this shifted eigenvalue assumes the
shape of the universal resonance curve. On the other hand, each shifted eigen-
value εI ∈ �D remains sharp. According to (16a), if β is small the corresponding
probability wa

I s to find local state |Θs〉 in the isolated eigenstate |ΨI 〉 (probability
for |Θs〉 to have eigenvalue εI ∈ �D) is

wa
I s = 〈θI | Sa |Θs 〉 〈Θs | Sa |θI 〉

〈θI | Sa |θI 〉 + O(β2).
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Since |θI 〉 = |ΘI 〉 + O(β2) this implies

wa
I s = δI s + O(β2).

If Es ∈ �D there is exactly one s ≡ I such that wa
I s ≈ 1 while if Es ∈ D

one has wa
I s ≈ 0 for each isolated eigenstate |ΨI 〉. Further if Es ∈ �D one has

ρa
s (ε) ≈ 0 since the eigenvalues εs /∈ D of the generic equation do not contrib-

ute to the density ρa(ε). Hence Es ∈ �D implies
∑

I w
a
I s +

∫

ρa
s (ε)dε ≈ 1 in accord

with completeness requirement (56a). In this case eigenvalue distribution of local
state |Θs〉 consists of a sharp eigenvalue at the position εs ∈ �D, while the contri-
bution of eigenvalues ε ∈ D is negligible. Another possibility is Es ∈ D. Accord-
ing to (44a) in this case one has

∫

ρa
s (ε)dε ≈ 1. Hence one again finds

∑

I w
a
I s +

∫

ρa
s (ε)dε ≈ 1 in accord with completeness requirement (56a). In particular, if

Es is nondegenerate eigenvalue distribution of local state |Θs〉 has the shape of
the universal resonance curve centered at the point ε = εs and situated close to
the corresponding unperturbed eigenvalue Es (see equation (45)), while the con-
tribution of isolated eigenvalues εI ∈ �D is negligible. Since β is small generic
equation (10) has exactly ρ eigenvalues εs(β) that in a limit β → 0 converge to
local eigenvalues Es . Hence

∑

I w
a
I +∫ ρa(ε)dε ≈ ρ in accord with completeness

requirement (56b).
Above we have neglected the contribution to total probability of those reso-

nant points εd that in a limit β → 0 converge to some point ed ∈ Λ where ω(ε)

diverges and where ed /∈ {Es}. According to (47) this contribution is negligible
and hence all above conclusions remain valid.

Consider now the case when the system S∞ contains some anomal points.
If εr ∈ D is such a point, it is either degenerate or passive. If it is passive the
contribution of the integral

∫

ρ(r)(ε)dε to the total probability is zero (see equa-
tion (44a)). If it is degenerate, the contribution of this integral to the total proba-
bility equals one, which is less than the degeneracy of εr . In both cases one finds
∑

I w
a
I + ∫ ρa(ε)dε < ρ in violation of the expression (56b). The missing contri-

bution is due to the isolated eigenstate or eigenstates that has the eigenvalue in
this anomal point [8].

4. Example

In order to illustrate the above approach, consider the interaction of a two-
dimensional system Sa

2 with an infinite system Sb
∞ that contains a single one-

parameter eigenvalue band. This example is quite simple, yet complex enough to
illustrate key features of the suggested approach.

Let {|s〉} be an orthonormalized base in Xa
2

〈s | p〉 = δsp,
∑

s

|s〉 〈s| = Ia. (57)
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Let the system Sa
2 in this base be characterized by the matrices

A =
(

0.5 −0.25
−0.25 0.6

)

, Sa =
(

1.1 0.1
0.1 1

)

. (58a)

For the sake of generality we assume that this system is described by a gen-
eralized eigenvalue equation (1a) where Sa 	= Ia . Eigenvalues and corresponding
eigenstates of this system are

E1 = 0.25474, E2 = 0.85536, (58b)

|Θ1〉 =
(

0.78168
0.62368

)

, |Θ2〉 =
(

0.60561
−0.79576

)

, (58c)

where |Θs〉 are orthonormalized according to (1b).
For the sake of simplicity in (58c) and in the following expressions we freely

mix bracket notation with a standard vector notation. Strictly, this is not allowed
and one should write, for example, 〈1 | Θ1〉 = 0.78168, 〈2 | Θ1〉 = 0.62368, etc.
Nevertheless, with a due caution one can use slightly inaccurate notation (58c).

Let the infinite dimensional system Sb
∞ contain a single one-parameter

eigenvalue band in the interval D ≡ [λa, λb] = [−1, 1] and let the functions as(ε)

that incorporate key information about this system and about the interaction of
this system with the system Sa

2 be given by

a1(ε) = (ε2 − 1) ·
{

1 if ε ∈ D,
0 otherwise, a2(ε) = (ε − 1) ·

{

1 if ε ∈ D,
0 otherwise. (59a)

Those functions define characteristic matrix f(ε) with matrix elements
fsp(ε) = 〈s | f(ε) |p 〉

f(ε) =
(

(

ε2 − 1
)2 (

ε2 − 1
)

(ε − 1)
(

ε2 − 1
)

(ε − 1) (ε − 1)2

)

·
{

1 if ε ∈ D,
0 otherwise. (59b)

Orthonormalized eigenstates and corresponding eigenvalues of this matrix
are

| f1(ε)〉 = 1√
ε2+2ε+2

(

1 + ε

1

)

, | f2(ε)〉 = 1√
ε2+2ε+2

(

1
−1 − ε

)

, (60a)

ξ1(ε) ≡ a1(ε)
2 + a2(ε)

2 = (ε − 1)2(ε2 + 2ε + 2), ξ2(ε) = 0, ε ∈ D.

(60b)

In accord with the expression (7b), there is only one eigenvalue of f(ε) that
may differ from zero.

In figure 1(a) are shown matrix elements fsp(ε) of the characteristic matrix
f(ε). Matrix elements f11(ε) and f12(ε) ≡ f21(ε) are continuous for each real
ε, while matrix element f22(ε) is discontinuous in the point ε = −1 on the left
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Figure 1. Characteristic matrix f(ε) of the example combined system S∞. In this example range D
equals D = [−1, 1]. (a) Matrix elements fsp(ε) of the characteristic matrix. Those matrix elements

vanish outside the range D. (b) Eigenvalue ξ1(ε) of the characteristic matrix.

edge of the range D. Eigenvalue ξ1(ε) of f(ε) is hence also discontinuous in this
point (see figure 1(b)). By definition, the point λa = −1 is contained in a set Λ

(see section 3.1).
According to (8b), each matrix element ωsp(ε) of the derived matrix ω(ε) is

an integral of a type

K (ε) = P

b∫

a

f (λ)

ε − λ
dλ. (61a)

If f (λ) is polynomial, there is an exact solution to this integral. In this case
one finds [7]

K (ε) = f (ε) ln

∣
∣
∣
∣

ε − a

ε − b

∣
∣
∣
∣
− g(ε), (61b)
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where

f (λ) =
n
∑

i=0

ciλ
i , g(ε) =

n
∑

k=1

ck gk(ε), (61c)

and where gk(ε)(k > 0) are polynomials [7]

gk(ε) =
k−1
∑

i=0

εi

k − i

[

bk−i − ak−i
]

, k = 1, 2, . . . . (61d)

Hence and from (59b) one finds matrix elements ωsp(ε) = 〈s | ω(ε) |p 〉 of the
derived operator ω(ε)

ω11(ε) =
(

ε2 − 1
)2

ln

∣
∣
∣
∣

ε + 1
ε − 1

∣
∣
∣
∣
− 2ε3 + 10

3
ε,

ω22(ε) = (ε − 1)2 ln

∣
∣
∣
∣

ε + 1
ε − 1

∣
∣
∣
∣
− 2ε + 4,

ω12(ε) ≡ ω21(ε) =
(

ε2 − 1
)

(ε − 1) ln

∣
∣
∣
∣

ε + 1
ε − 1

∣
∣
∣
∣
− 2ε2 + 2ε + 4

3
. (62)

In figure 2(a) are shown those matrix elements. Since f22(ε) is discontin-
uous in the point ε = −1 ∈ Λ, matrix element ω22(ε) diverges in this point.
According to (62) this is a logarithmic type divergence. However, matrix elements
ω11(ε) and ω12(ε) are everywhere continuous and finite. In particular one finds
ω11(−1) = −4/3 and ω12(−1) = −8/3. In accord with (9c) one has ωss(ε) < 0
if ε < λa = −1 and ωss(ε) > 0 if ε > λb = 1. However, if ε ∈ D those matrix
elements may assume positive as well as negative values.

For completeness in figure 2(b) are shown derivatives ωsp
′(ε) of the above

matrix elements. In accord with (9b) one has ωss
′(ε) < 0 for each ε ∈ �D while

for ε ∈ D those derivatives may assume any value. Note that in addition to the
derivative ω22

′(ε), derivative ω12
′(ε) also diverges in a point ε = −1. This is due

to the fact that f12(ε) has zero of the first order in this point [7].
One has now all necessary information for the description of the system Sa

2
that interacts with the infinite system Sb

∞.

4.1. Solution of the generic eigenvalue equation

Isolated eigenvalues and eigenstates of the combined system as well as reso-
nant points are solutions of the generic equation (10). This equation has a non-
trivial solution if and only if the determinant of the system vanishes. In a 2 × 2
case condition |H(ε)| = 0 implies

|H(ε)| ≡ h11(ε)h22(ε)− h12(ε)h21(ε) = 0, (63a)
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a)

b)

Range D

w
22

w
22

'

w
12

'

w
12w

11

w
11
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ε

ε

Figure 2. Derived matrix ω(ε). (a) matrix elements ωsp(ε) of ω(ε). Matrix element ω22(ε) diverges
in the point ε = −1. (b) Derivatives ωsp′(ε) of matrix elements ωsp′(ε). Derivatives ω22′(ε) and

ω12′(ε) diverge in the point ε = −1.

where

hsp(ε) ≡ β2ωsp(ε)+ Asp − εSa
sp. (63b)

Hence

β4 |ω(ε)| + β2 {ω11(ε)
(

A22 − εSa
22
)+ ω22(ε)

(

A11 − εSa
11
)− 2ω12(ε)

(

A12 − εSa
12
)}+ ∣∣A − ε Sa

∣
∣ = 0, (63c)

where ωsp(ε) are given by (62) and where |ω(ε)| and |A − ε Sa| are determinants
of matrices ω(ε) and (A − ε Sa), respectively. In our case one has ω12(ε) ≡ ω21(ε)

which slightly simplifies expression (63c). Since H(ε) is hermitian one has in gen-
eral h12(ε) ≡ h∗

21(ε) and ω12(ε) ≡ ω∗
21(ε).

One can solve (63c) for β to obtain solutions of a type β = β(ε) and for
ε to obtain solutions of a type ε = ε(β). In the former case note that (63c) is
quadratic in x = β2. Hence and since β � 0 there are two analytic solutions of
a type β = β(ε) that can be obtained in a closed form. Only real solutions are
admitted since β can not assume complex values. In the latter case each solu-
tion ε = ε(β) to (63c) is an eigenvalue of the generic eigenvalue equation. Those
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(a) (b) (c)

eR2

bR1
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E2

ε

E1
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e2
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b

b

b

b

eL1 b

bR2

eR1

β

Figure 3. Eigenvalues of the generic equation considered as functions of the coupling β.
Eigenvalues inside the range D are resonant points, while eigenvalues outside this range are
isolated eigenvalues of the combined system. Eigenvalue distributions of local states

∣
∣Θs

〉

for the
coupling β corresponding to the lines (a), (b) and (c) are shown in figures 6, 7 and 8, respectively.

For details see text.

solutions are shown in figure 3. Considered as a function of β there are six such
solutions, εR1(β), εR2(β), ε1(β), ε2(β), εL1(β) and εL2(β).

If β = 0 eigenvalues of the generic equation coincide with local eigenvalues.
In particular, one has εR1(0) = E1 = 0.25474 and εR2(0) = E2 = 0.85536. Both
eigenvalues are contained in the range D. As the coupling β increases, those two
eigenvalues change as continuous functions εR1(β) and εR2(β). For small β one
has εR1(β), εR2(β) ∈ D and those eigenvalues are resonant points. However, if
the coupling is as strong as β > βR2 one has εR2(β) /∈ D and this eigenvalue
becomes right isolated eigenvalue of the combined system. Also, if β > βR1 one
finds εR1(β) /∈ D and this eigenvalue becomes another right isolated eigenvalue
of the combined system. As β > βR1 increases, isolated eigenvalues εR1(β) and
εR2(β) continue to increase. This is in accord with expressions (9c) and (19a) that
imply ∂εR

/

∂β > 0 for each right isolated eigenvalue εR > λb. Hence for each
β > βR1 combined system has two right isolated eigenvalues. This is maximum
number of right isolated eigenvalues that combined system with ρ = 2 my have.

Points βR1 and βR2 can be obtained from the requirement that in those points
one must have ε = λb = 1. Inserting this value into (63c) and using expressions
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(62) that imply ω11(1)= 4/3, ω22(1)= 2 and ω12(1)= 4/3, one finds

8
9

· β4 − 0.8 · β2 + 0.1175 = 0.

This is quadratic equation in the unknown x = β2. Since β � 0 there are
two solutions, βR2 = 0.42992 and βR1 = 0.84567.

Consider now remaining four eigenvalues εL1(β), εL2(β), ε1(β) and ε2(β).
Those eigenvalues are also continuous functions of β and they emerge from the
point ε= λa = − 1 ∈ Λ on the left edge of the range D. The emergence of those
eigenvalues is due to the divergence of the operator ω(ε) in this point. In order
to analyze behavior of those eigenvalues close to the point ε= − 1, consider
determinant |H(ε)| where ε = −1 + h and where h 	= 0 is a small quantity. For
each h 	= 0, however small, this determinant is a continuous function of β. Since
(63c) is quadratic in x = β2, this function crosses the value |H(−1 + h)| = 0 in
at most two points, β = β1(h) and β = β2(h). By definition, if h > 0 in a point
β = β1(h) one has a resonant point, while if h < 0 in this point one has an iso-
lated eigenvalue. In figure 3 those two values of small quantity h correspond to
the resonant point ε1(β) and to the left isolated eigenvalue εL1(β), respectively.
Similarly for each h 	= 0, however small, in a point β = β2(h) one has resonant
point ε2(β) if h > 0 and one has isolated eigenvalue εL2(β) if h < 0. As absolute
value of h decreases β1(h) converges to β1 = 0, while β2(h) converges to a finite
value β2 > 0. Due to a divergence of ω22(ε) in a point ε = −1, in a limit h → 0
determinant |H(−1 + h)| diverges for each β, except for β = 0 and for β = β2.

Let us now determine the point β = β2. In order to find this point one has
to find that value of β for which determinant |H(−1 + h)| does not diverge in a
limit h → 0. Expressions (62) imply

ω11(−1 + h) = −4
3

+ O(h), ω12(−1 + h) ≡ ω21(−1 + h) = 8
3

+ O(h),

ω22(−1 + h) = (2 − h)2 ln

∣
∣
∣
∣

h

2 − h

∣
∣
∣
∣
+ 6 − 2h = 4 ln

∣
∣
∣
∣

h

2 − h

∣
∣
∣
∣
+ O(1), (64a)

where O(x) is a small quantity of the order x . Hence

h11(−1 + h) = −4
3
β2 + 1.6 + O(h), h12(−1 + h) = −8

3
β2 − 0.15 + O(h),

h22(−1 + h) = 4β2 ln

∣
∣
∣
∣

h

2 − h

∣
∣
∣
∣
+ O(1). (64b)

Since for each β > 0 matrix element h22(−1 + h) diverges in a limit h → 0
while other matrix elements are in this limit finite, determinant (63a) does not
diverge in this limit if and only if h11(−1) = 0. Only in this case the product
h11(−1 + h)h22(−1 + h) can be finite in a limit h → 0. This condition implies
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β2 = √
1.2 = 1.09545. If β > β2 combined system contains left isolated eigen-

value εL2(β) < λa = −1 as well as a resonant point ε2(β) ∈ D. If β < β2
those quantities do not exist, and they both emerge at the point β = β2. Hence

lim
β→β2+

εL2(β) = −1 ∈ Λ and lim
β→β2+

ε2(β) = −1 ∈ Λ.

Above analysis shows that for each β 	= 0 the combined system has an iso-
lated eigenvalue εL1(β) < −1 as well as a resonant point ε1(β) > −1. Though
in this example generic equation (10) is a 2×2 eigenvalue equation, nevertheless
it has at least four eigenvalues, however small β > 0. In a limit β → 0 eigen-
values εR1(β) and εR2(β) converge to local eigenvalues E1 and E2, respectively.
The remaining two eigenvalues εL1(β) and ε1(β) in this limit converge to the
point ε = −1 ∈ Λ where characteristic matrix f(ε) is discontinuous and where
the derived matrix ω(ω) diverges. Similarly, however close β > β2 to the point
β = β2, the combined system has an additional isolated eigenvalue εL2(β) < −1
as well as an additional resonant point ε2(β) > −1. In a limit β → β2 those two
eigenvalues also converge to the point ε = −1 where matrix ω(ε) diverges. Thus
for each β > β2 a 2 × 2 generic eigenvalue equation has as many as six eigen-
values. If β > 0 is relatively small, eigenvalues εL1(β) and ε1(β) are extremely
close to the left edge ε = λa = −1 of the range D. Similarly, if β > β2 is
relatively close to β = β2, eigenvalues εL2(β) and ε2(β) are extremely close to
ε = −1. For example, if h = ±10−2 one finds |H(−1 + h)| = 0 for β = 0.3126
and for β = 1.3790 > β2, if h = ±10−5 one finds |H(−1 + h)| = 0 for β = 0.1909
and for β = 1.1802 > βL2, while if h = ±10−10 one fins |H(−1 + h)| = 0
for β = 0.1331 and for β = 1.1337 > βL2. Hence at β ≈ 0.13 isolated eigen-
value εL1(β) and resonant point ε1(β) differ from the line ε = −1 as little as
h ≈ ±10−10. If the coupling increases to β ≈ 0.19 this difference is still as
small as h ≈ ±10−5, while if the coupling is as strong as β ≈ 0.31 this differ-
ence increases to h ≈ ±10−2. As explained in section 3.3.2, if β is small, iso-
lated eigenvalue εL1(β) and resonant point ε1(β) are approximately given by the
expression λa±A exp

(−K/β2
)

. Reasonably good fit to the above data is obtained
with the expression ε±(β) = −1 ± 0.5369 · exp

(−0.3969/β2
)

where (+) refers to
ε1(β) while (−) refers to εL1(β). In a similar way can be analysed resonant point
ε2(β) and isolated eigenvalue εL2(β)(see figure 3). As explained in section 3.3.1,
initial closeness of those curves to the line ε = −1 is due to the discontinuity of
the characteristic matrix f(ε) in the point ε = −1.

Above analysis determines main qualitative features of the isolated and res-
onant solutions of the combined system. It remains to find out whether this sys-
tem contains some anomal point. In those points, if any, the combined system
S∞ has isolated eigenvalues. Since each anomal point is also a resonant point,
those anomal points may exist only on the curves ε1(β) and ε2(β) as well as on
the curve εR1(β) in the interval β ∈ (0, βR1) and on the curve εR2(β) in the inter-
val β ∈ (0, βR2). By definition, in the anomal point ε = εa there exists a non-
trivial state |θ〉 that satisfies simultaneously two conditions, f(ε) |θ〉 = 0 and also
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H(ε) |θ〉 = 0. First condition implies that |θ〉 must be an eigenstate of the char-
acteristic operator f(ε) with the eigenvalue zero. According to (60) this implies
|θ〉 = | f2(ε)〉. The second condition now reads H(ε) | f2(ε)〉 = 0. Hence one finds
that at anomal point ε = εa one should have

β2 | f a(εa)〉 = | f b(εa)〉 , (65a)

where

| f a(ε)〉 = ω(ε) | f2(ε)〉 , | f b(ε)〉 = (εSa − A
) | f2(ε)〉 . (65b)

Using (58a) and (62) one can obtain an explicit analytic expression for
functions | f a(ε)〉 and | f b(ε)〉. According to (65a), in the anomal point those
functions are mutually proportional. One finds that this proportionality condi-
tion implies εa = 0.92515. Once ε = εa is known, expression (65a) implies
βa = 0.32603. System S∞ hence contains a single anomal point at the position
ε = εa . This anomal point exists if and only if the coupling equals β = βa . As
shown in figure 3, this point lies on the curve εR2(β).

In conclusion, system S∞ may contain at most two right and at most two
left isolated eigenvalues. Left isolated eigenvalue εL1(β) exists for each β > 0,
right isolated eigenvalue εR2(β) exists for each β > βR2 = 0.42992, another right
isolated eigenvalue εR1(β) exists for each β > βR1 = 0.84567, while another left
isolated eigenvalue εL2(β) exists for each β > β2 = 1.09543. Hence for β > β2
the system S∞ contains maximum possible number of 2ρ = 4 isolated eigen-
values and eigenstates. Further, this system contains an anomal point that lies
on the curve εR2(β) at the position ε = εa = 0.92515 and β = βa = 0.32603.
Hence this system contains an isolated eigenstate with the eigenvalue εr ≡ εa =
0.92515 ∈ D. This eigenstate exists if and only if the coupling β is exactly β =
βa .

4.2. Isolated solutions of the combined system

Once isolated eigenvalue εI (β) ∈ �D is obtained as a root of the generic
eigenvalue equation, one easily finds the corresponding isolated eigenstate |ΨI 〉.
Eigenstate |θs〉 of a 2 × 2 generic eigenvalue equation (10) equals

|θs〉 = h12(εs) |1〉 − h11(εs) |2〉 , (66)

where εs is the corresponding eigenvalue. In particular, if εs ≡ εI ∈ �D the cor-
responding eigenstate |θI 〉 determines components

∣
∣Ψa

I

〉 ∈ Xa
ρ and

∣
∣Ψb

I

〉 ∈ Xb∞ of
the isolated eigenstate |ΨI 〉 according to the expressions (14). Thus, once isolated
eigenvalue εI ∈ �D is known, derivation of the corresponding eigenstate |ΨI 〉 is
straightforward.
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Concerning properties of isolated eigenstate |ΨI 〉, of particular interest are
probabilities wa

I s = |〈Θs | Sa |ΨI 〉|2 to find this eigenstate in local states |Θs〉
(s = 1, 2), as well as probability wa

I = ∑

s w
a
I s to find this eigenstate in the

system Sa
ρ . Those probabilities are given by expressions (16) where the state |θI 〉

is given by (66). In figure 4 are shown those probabilities for the right isolated
eigenstates |ΨR1〉 and |ΨR2〉. In particular, in figure 4(a) are shown probabilities
wa

R1,s as well as probability wa
R1 = wa

R1,1 +wa
R1,2 for the right isolated eigenstate

|ΨR1〉. Since right isolated eigenvalue εR1(β) exists only if β > βR1 = 0.84567,
those probabilities vanish if β � βR1. As β continuously increases, in a point
β = βR1 probabilities wa

R1,1, w
a
R1,2 and wa

R1 discontinuously jump from zero to
wa

R1,1(βR1) = 0.11008, wa
R1,2(βR1) = 0.53733 and wa

R1(βR1) = 0.64741, respec-
tively. In figure 4(b) are shown corresponding probabilities for another right iso-
lated eigenstate |ΨR2〉. Those probabilities vanish if β � βR2 = 0.42992. As β
continuously increases, in a point β = βR2 those probabilities discontinuously
jump from zero to wa

R2,1(βR2) = 0.13067, wa
R2,2(βR2) = 0.71062 and wa

R2(βR2) =
0.84129, respectively.

In figure 5 are shown probabilities for left isolated eigenstates |ΨL1〉 and
|ΨL2〉. Since left isolated eigenvalue εL1(β) exists for each β > β1 = 0, probabili-
ties wa

L1,s and wa
L1 = wa

L1,1+wa
L1,2 are nonzero for each β > 0. As explained in a

previous section, if the coupling is relatively weak, left isolated eigenvalue εL1(β)

is extremely close to the left edge λa = −1 ∈ Λ of the range D (see figure 3). As
discussed in section 3.3.1, corresponding probabilities are negligible (see figure
5(a)). In figure 5(b) are shown probabilities associated with left isolated eigen-
state |ΨL2〉. Since left isolated eigenvalue εL2(β) exist only if β > β2 = 1.09545,
those probabilities vanish if β � β2. In addition, if β > β2 is relatively close
to the point β2, left isolated eigenvalue εL2(β) is extremely close to the left edge
λa = −1 of the range D and the corresponding probabilities are hence negligible.

In the case of right isolated eigenstates there is a sudden change in the cor-
responding probabilities as the coupling β assumes a critical value βR1 or βR2
(see figure 4), while in the case of left isolated eigenstates there is a very smooth
change of those probabilities as the coupling β assumes a critical value β1 or
β2 (see figure 5). This difference is due to the continuity (discontinuity) of the
characteristic operator f(ε) in the corresponding boundary point [7]. Thus in the
point λb = 1 all matrix elements fsp(ε) of f(ε) have zero of the second order.
As a result matrix elements 〈θ | f(ε) |θ 〉 where |θ〉 are the corresponding eigen-
states of the generic eigenvalue equation have also zero of the second order in
the point ε = 1. This implies that matrix element 〈θ | dω/dεI |θ 〉 is finite in this
point. Hence and according to (16a), the corresponding probabilities abruptly
increase from zero to a finite nonzero value as one crosses a critical value of the
interaction β. However, in a point λa = −1 operator f(ε) is discontinuous and
derived operator ω(ε) as well as its derivative diverge. Hence and according to
(16a) probability wa

I s is extremely small if εI is close to the point ε = −1 and
in a limit ε → −1 it is zero. Therefore there is continuous and a very smooth
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Figure 4. Probabilities wa
Ri,s to find right isolated eigenstates

∣
∣ΨR1

〉

and
∣
∣ΨR2

〉

in local states
∣
∣Θs

〉

and probabilities wa
Ri = wa

Ri,1 + wa
Ri,2 to find those eigenstates in the system Sa

2. (a) Probabilities

corresponding to the eigenstate
∣
∣ΨR1

〉

. (b) Probabilities corresponding to the eigenstate
∣
∣ΨR2

〉

.

change of related probabilities considered as a function of coupling parameter β
[7].

4.3. Embedded solutions of the combined system and eigenvalue distributions of
local states

In a 2×2 case one can obtain an exact solution of the fractional shift equa-
tion (23a). In this case one finds

X (ε) = |H(ε)|
h11(ε) f22(ε)+ h22(ε) f11(ε)− h12(ε) f21(ε)− h21(ε) f12(ε)

, (67a)

|ψ(ε)〉 = [h12(ε)− X (ε) f12(ε)] |1〉 − [h11(ε)− X (ε) f11(ε)] |2〉 , ε ∈ D.

(67b)
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Figure 5. Probabilities wa
Li,s to find left isolated eigenstates

∣
∣ΨL1

〉

and
∣
∣ΨL2

〉

in local states
∣
∣Θs

〉

and probabilities wa
Li = wa

Li,1 + wa
Li,2 to find those eigenstates in the system Sa

2. (a) Probabilities

corresponding to the eigenstate
∣
∣ΨL1

〉

. (b) Probabilities corresponding to the eigenstate
∣
∣ΨL2

〉

.

In particular, in a resonant point ε = εr ∈ D one has |H(εr )| = 0 and hence
X (εr ) = 0. In this case eigenstate |Ψ(εr )〉 reduces to the eigenstate (66) of a 2×2
generic eigenvalue equation.

Solution (67) can be inserted into (25) to obtain an explicit expression for
the component |Ψa(ε)〉 ∈ Xa

ρ of the embedded eigenstate |Ψ(ε)〉. Once |Ψa(ε)〉 is
known, one can obtain all related properties of the system Sa

2 that interacts with
the system Sb

∞.
An important quantity is probability density ρa

s (ε) = |〈Θs | Sa |Ψa(ε)〉|2 to
find local state |Θs〉 with the eigenvalue ε ∈ D. In conjuncture with probabili-
ties wa

I s to find this state in the isolated eigenstates |ΨI 〉, this probability density
determines eigenvalue distribution of |Θs〉. We will consider such eigenvalue dis-
tributions for three characteristic values of the coupling β: weak coupling β =
0.1, intermediate coupling β = 0.6 and extremely strong coupling β = 1.9. Those
values correspond to lines (a), (b) and (c), respectively, in figure 3. We will also
consider eigenvalue distribution in the anomal point β = βa as well as very close
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Figure 6. Eigenvalue distributions of local states
∣
∣Θ1

〉

and
∣
∣Θ2

〉

in the case β = 0.1. Those distribu-
tions correspond to the line (a) in figure 3. (a) Probability densities ρa

1 (ε) and ρa
2 (ε). (b) Probability

density ρa
2 (ε) highly magnified. The shape of the universal resonant curve is manifest.

to this point in order to illustrate the emergence of the isolated eigenstate in this
point.

The case β = 0.1 is considered in figure 6. This value corresponds to the
line (a) in figure 3. As shown in a previous section, for each β > 0 the combined
system S∞ contains left isolated eigenstate |ΨL1〉. However, if β is as small as
β = 0.1, probabilities wa

L1,s(0.1) are negligible (see figure 5(a)). Since in the case
β = 0.1 the combined system contains no other isolated eigenstate, spectral dis-
tributions of local states |Θ1〉 and |Θ2〉 reduce to probability densities ρa

1 (ε) and
ρa

2 (ε), respectively.
Those probability densities are shown in figure 6(a). Due to the interac-

tion with the system Sb
∞ unperturbed eigenvalue E1 = 0.25474 shifts to a posi-

tion εR1(0.1) = 0.29227 while unperturbed eigenvalue E2 = 0.85536 shifts to
a position εR2(0.1) = 0.86093. Approximate expression (46a) that is valid in a
weak coupling limit yields εR1(0.1) ≈ 0.29160 and εR2(0.1) ≈ 0.86087. Those
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values are quite close to the exact values for εR1(0.1) and εR2(0.1), respectively.
In the neighborhood of the resonant point ε = εR1(0.1) probability density
ρa

1 (ε) has the shape of a universal resonance curve with a relatively small width
�εR1(0.1). Using (45b) one finds �εR1(0.1) = 0.0775. One also finds wa

C1(0.1) =
∫

ρa
1 (ε)dε = 1. This implies wa

C1(0.1) + wa
L1,1(0.1) = 1 in accord with the com-

pleteness requirement. Concerning probability density ρa
2 (ε), it is situated at the

position ε = εR2(0.1). This density has also the shape of the universal reso-
nance curve with a unite area, wa

C2(0.1) = ∫ ρa
2 (ε)dε = 1. Since the contribution

wa
L1,2(0.1) of the isolated eigenstate |ΨL1〉 to the local state |Θ2〉 is negligible, one

again finds wa
C2(0.1) + wa

L1,2(0.1) = 1. Unlike density ρa
1 (ε), probability density

ρa
2 (ε) is extremely sharp and expression (45b) yields �εR2(0.1) = 0.00015. This

density is shown highly amplified in figure 6(b).
Densities ρa

1 (ε) and ρa
2 (ε) in figure 6(a) are well separated, they have both

the shape of the universal resonance curve, and the area under each of those
densities equals one. Density ρa

1 (ε) represents shifted eigenvalue E1 while density
ρa

2 (ε) represents shifted eigenvalue E2. As discussed in section 3.4.7, this is the
case of the relatively weak coupling that can be successfully treated within the
formalism of the standard perturbation expansion approach. The above results
are typical results usually obtained within this approach. Note that in the case
β = 0.1 the combined system has a third resonant point ε1(0.1) at the position
ε1(0.1) ≈ −1. However, this resonant point is associated with the point ε = −1
where ω(ε) diverges and, as explained in section 3.4.7, the contribution of this
resonant point to probability densities ρa

s (ε) is negligible (see expression (47)).
In figure 7 are shown eigenvalue distributions of local states |Θ1〉 and |Θ2〉

for the case β = 0.6. This coupling corresponds to the line (b) in figure 3. Inter-
action is now much stronger and in addition to the left isolated eigenstate |ΨL1〉
that is always present, the system S∞ contains right isolated eigenstate |ΨR1〉.
Approximate expression (46a) valid in the weak coupling limit yields εR1(0.6) ≈
1.5820 and εR2(0.6) ≈ 1.05385. Both values are outside the range D. This indi-
cated the failure of the perturbation expansion approach for this value of β.
Exact values obtained as roots of (63c) are εR1(0.6) = 0.90157 and εR2(0.6) =
1.20747. Only εR2(0.6) is an isolated eigenvalue, while εR1(0.6) ∈ D is a resonant
point. Using expression (50b) for the estimation of the uncertainty �εR1(0.6)
one finds �εR1(0.6) = 0.0268. This uncertainty is quite small and, as explained
in section 3.4.8, densities ρs(ε) and ρa

s (ε) should have a prominent resonant fea-
ture at the position εR1(0.6). As shown in figure 7 there is indeed a visible res-
onant structure at this point.

In addition to the right isolated eigenvalue εR2(0.6), the system S∞ con-
tains a left isolated eigenvalue εL1(0.6) = −1.26961 that is also obtained as a
root of (63c). This eigenvalue is relatively far from the range D and the con-
tribution of the corresponding eigenstate to spectral distributions can not be
neglected. In conclusion, if β = 0.6 to the spectral distributions of local states
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in the case β = 0.6. Those distri-
butions correspond to the line (b) in figure 3. Probabilities wa

L1,s and wa
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∣
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〉
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〉
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|Θ1〉 and |Θ2〉 contribute both isolated eigenstates as well as all embedded ei-
genstates |Ψ(ε)〉 (ε ∈ D).

In figure 7(a) is shown spectral distribution of the local state |Θ1〉. Prob-
ability density ρa

1 (ε) has a sharp pick at the position εR1(0.6) = 0.90157.
However, unlike probability densities in figure 6, this probability density has sig-
nificant value in the entire range D and not only close to the point εR1(0.6).
In addition one finds wa

C1(0.6) = ∫

ρa
1 (ε)dε = 0.49594 < 1. Hence ρa

1 (ε)

can not be reproduced by a standard perturbation expansion method. Concern-
ing contributions of isolated eigenstates, one finds wa

R2,1(0.6) = 0.30867 and
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wa
L1,1(0.6) = 0.19539. In accord with the completeness requirement, those prob-

abilities satisfy wa
L1,1(0.6)+ wa

R2,1(0.6)+ wa
C1(0.6) = 1.

In figure 7(b) is shown spectral distribution of the local state |Θ2〉. One
again finds that a probability density ρa

2 (ε) has a sharp pick at the position
εR1(0.6). This pick is significantly higher than the pick associated with the den-
sity distribution ρa

1 (ε). One also finds wa
R2,2(0.6) = 0.38232, wa

L1,2(0.6) = 0.04879
and wa

C2(0.6) = ∫ ρa
2 (ε)dε = 0.56889. Those probabilities again satisfy complete-

ness requirement wa
R2,2(0.6)+ wa

L1,2(0.6)+ wa
C2(0.6) = 1.

Though the coupling β = 0.6 is relatively large, both densities ρa
1 (ε) and

ρa
2 (ε) have a sharp pick at the position εR1(0.6). As explained in section 3.4.8,

this is due to the fact that the width �εR1(0.6) as calculated according to (50b)
is relatively small. Hence in a small neighborhood � at the point ε = εR1(0.6)
density ρa(ε) = ρa

1 (ε) + ρa
2 (ε) is very well approximated with the universal res-

onance curve (52b). Note that in addition to resonant point εR1(0.6) the sys-
tem S∞ has another resonant point at ε1(0.6) = −0.55401. Using expression
(50b) one finds �ε1(0.6) > 1 which is bigger than the entire range D. This indi-
cates that at the resonant point ε1(0.6) no significant resonant structure should
be formed. Accordingly, in figure 7 no resonance can be noticed at this position.

In figure 8 are shown eigenvalue distributions of local states |Θ1〉 and |Θ2〉
for the case β = 1.9. This value corresponds to the line (c) in figure 3. Interac-
tion is now extremely strong and the system S∞ contains maximum number of
two left and two right isolated eigenvalues and eigenstates. Those eigenvalues are
εR1(1.9) = 3.38873, εR2(1.9) = 1.47546 εL1(1.9) = −3.41405 and εL2(1.9) =
−1.14456. Spectral distribution of a local state |Θ1〉 is shown in figure 8. One
finds probabilities wa

L1,1(1.9) = 0.36034, wa
L2,1(1.9) = 0.06962, wa

R1,1(1.9) =
0.09588, wa

R2,1(1.9) = 0.42344 and wa
C1(1.9) = 0.05072. Those probabilities are

again in accord with the completeness requirement. Spectral distribution of a
local state |Θ2〉 is shown in figure 8(b). This spectral distribution is character-
izes by values wa

L1,2(1.9) = 0.07611, wa
L2,2(1.9) = 0.12052, wa

R1,2(1.9) = 0.56568,
wa

R2,2(1.9) = 0.12833 and wa
C2(1.9) = 0.10935. Those values also satisfy com-

pleteness requirement. Densities ρa
1 (ε) and ρa

2 (ε) in figure 8 have no resemblance
to the universal resonance curve and small coupling approximation completely
fails. Those results can not be reproduced by the standard perturbation expan-
sion approach.

4.4. Anomal point

As emphasized in section 3.5, expressions for the component |Ψa(ε)〉 ∈ Xa
ρ

of the eigenstate |Ψ(ε)〉 and for related densities ρa
s (ε) and ρs(ε) are valid for

each ε ∈ D, except for anomal points. As shown in section 4.1, the system
S∞ has an anomal point at the position εa = 0.92515 and βa = 0.32603
(see figure 3). Eigenvalue distributions of local states |Θ1〉 and |Θ2〉 for the
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coupling β = βa are shown in figure 9(a) and (b), respectively. For this cou-
pling the system S∞ contains only one isolated eigenstate |ΨL1〉 with the eigen-
value εL1 = −1.01406. Corresponding probabilities are wa

L1,1(βa) = 0.02612
and wa

L1,2(βa) = 0.01146. Concerning contributions of probability densities ρa
s (ε)

to total probability one finds wa
C1(βa) = ∫

ρa
1 (ε)dε =0.94009 and wa

C2(βa) =
∫

ρa
2 (ε)dε =0.08252. Hence wa

L1,1(βa)+ wa
C1(βa) = 0.96620 < 1 and wa

L1,2(βa)+
wa

C2(βa) = 0.09399 < 1. Both expressions violate the completeness requirement
(56a) and both spectral distributions are hence in error. There is obviously some-
thing missing in those expressions.

In order to understand the reason for the failure of those expressions, con-
sider a continuous change β → βa . As long as β 	= βa all expressions are correct.
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Figure 9. Eigenvalue distributions of local states
∣
∣Θ1

〉

and
∣
∣Θ2

〉

in the anomal point β = βa and
in the point β0 = βa − 0.01 close to the anomal point. Probabilities wa

L1,s (s = 1, 2) are shown in

relative scale. (a) Eigenvalue distribution of local state
∣
∣Θ1

〉

in the anomal point. (b) Eigenvalue dis-
tribution of local state

∣
∣Θ2

〉

in the anomal point. (c) Eigenvalue distribution of local state
∣
∣Θ1

〉

in
the point β0 = βa−0.01. (d) Eigenvalue distribution of local state

∣
∣Θ2

〉

in the point β = βa−0.01. e)
Eigenvalue distribution from figure 9(c) in the neighborhood of the point ε = ε0 ≡ εR2(β0) highly
amplified. f) Eigenvalue distribution from figure 9(d) in the neighborhood of the point ε = ε0 ≡

εR2(β0) highly amplified.
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For physical reasons, if the coupling continuously changes, all relevant quanti-
ties should also continuously change. Hence correct expressions for those quan-
tities in the anomal point can be obtained as an appropriate limit of a process
β → βa .

Consider the coupling β = β0 = βa − h where h = 0.01 is relatively small
quantity. In figure 9(c) and (d) are shown corresponding spectral distributions
for the local states |Θ1〉 and |Θ2〉, respectively. Since β0 	= βa those spectral dis-
tributions are correct. One finds wa

C1(β0) = 0.97872 and wL1,1(β0) = 0.02128.
Hence wa

C1(β0)+wL1,1(β0) = 1 in agreement with the completeness relation (fig-
ure 9(c)). One also finds wa

C2(β0) = 0.99032 and wa
L1,2(β0) = 0.00968 which

implies wa
C2(β0) + wL1,2(β0) = 1 which also satisfies completeness requirement

(figure 9(d)). Comparing figure 9(a) and (b) with figure 9(c) and (d), one can see
an important difference. In figure 9(c) at the position ε = ε0 = εR2(β0) close
to the anomal point ε = εa there is a sharp pick which is absent in figure 9(a).
In figure 9(d) at the same position there is a similar sharp pick which is absent
in the corresponding figure 9(b). Those two picks are shown highly amplified in
figure 9(e) and (f), respectively. Both picks have the shape of the universal reso-
nance curve, they are both centered at the resonant point ε0 ≡ εR2(β0) = 0.92004
close to the anomal point (εa = 0.92515) and they are both extremely narrow.
Those two picks differ in their heights, first pick has the height ≈ 5.547 × 103

(figure 9(e)), while the second pick is as high as ≈ 1.778 × 105 (figure 9(f)). The
existence of such a prominent resonant feature is due to the fact that in a res-
onant point ε = ε0 the quantity F0(ε0) is very small (see equation (50b)). One
finds F0(ε0) ≈ 5.23 ∗ 10−6 and hence �ε0 ≈ 3.28 ∗ 10−6. The picks shown in
figure 10(e,f) correspond to the value h = 0.01. As h decreases center of those
picks slowly shifts to the anomal point εR2(βa) = εa , their width decreases to
zero, while their height increases to infinity. Simultaneously the area under the
first pick converges to wa

a1 = 0.03381 while the area under the second pick con-
verges to wa

a2 = 0.90601. This is the missing contribution in the anomal point.
Since εa is nondegenerate, this contribution can be obtained from the expres-
sion (52) in a limit β → βa . One finds wa

L1,1(βa) + wa
C1(βa) + wa

a1 = 1 and
wa

L1,2(βa) + wa
C2(βa) + wa

a2 = 1 in accord with the completeness requirement.
Thus in a limit h → 0 those picks contribute the missing density to the spectral
distributions of local states |Θ1〉 and |Θ2〉. In conclusion, if β = βa density ρa

s (ε)

has in a point ε = εa the shape of a delta function wa
a,sδ(ε− εa) and one has to

add this contribution to the density ρa
s (ε) in order to obtain the correct result.

This δ-like contribution to density is a characteristic fingerprint of the isolated
eigenstate. In general, in an anomal point combined system may have several iso-
lated eigenstates [8]. Unlike isolated eigenstates discussed in section 3.3 that are
associated with eigenvalues contained outside the range D, isolated eigenstates
associated with anomal points are embedded in this range. Following carefully
the process β → βa one can obtain exact expressions for those eigenstates and
related probabilities [8].
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Figure 10. Verification of the completeness relation for the eigenvalue distribution of a local state
∣
∣Θ1

〉

. Probabilities wa
I,1 as well as probability wa

C1 = ∫ ρa
1 (ε)dε and a total probability

∑

I w
a
I,1 +

wa
C1 are plotted as a function of a coupling parameter β. For details see text.

4.5. Verification of completeness relations

In section 4.3 we have verified completeness relations for the values β = 0.1,
β = 0.6 and β = 1.9. In a previous section we have analyzed failure of those
relations in the anomal point β = βa and we have shown that this failure is due
to the existence of the isolated eigenstate |Ψa〉 with the eigenvalue εa ∈ D. In
figures 10 and 11 completeness relations are verified in a more systematic way.
In particular, in figure 10 are shown probabilities wa

R1,1(β), w
a
R2,1(β), w

a
L1,1(β),

wa
L2,1(β) and wa

C1(β) = ∫

ρa
1 (ε)dε associated with the eigenvalue distribution of

the local state |Θ1〉. Total probability wall,1(β) = ∑

I w
a
I 1(β) + wa

C1(β) is also
shown. All those probabilities are given as a function of a coupling β for the
relatively large interval β ∈ [0, 2.2]. This interval includes the case of the weak
coupling as well as the case of the extremely strong coupling. According to
the completeness requirement one should have wall,1(β) = 1 for each β. One
finds that this is true for each β, except for the anomal point β = βa . In this
point contribution of embedded eigenstates wa

C1(β) has a sudden drop and hence
wall,1(β) discontinuously decreases from the required value wall,1(β) = 1 to the
value wall,1(βa) = 0.96620. As discussed in a previous section, this is due to the
existence of the isolated eigenstate |Ψa〉 with the sharp eigenvalue εa = 0.92515 ∈
D. This eigenstate exists if and only if β = βa ∈ D. In this respect it differs qual-
itatively from isolated eigenstates that are not embedded in the range D. Those
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Figure 11. Verification of the completeness relation for the eigenvalue distribution of a local state
∣
∣Θ2

〉

. Probabilities wa
I,2 as well as probability wa

C2 = ∫ ρa
2 (ε)dε and a total probability

∑

I w
a
I,2 +

wa
C2 are plotted as a function of a coupling parameter β. For details see text.

latter eigenstates exist not only for a particular value of β, but rather for each β
that is larger then some critical value.

In figure 11 are shown probabilities wa
R1,2(β), w

a
R2,2(β), w

a
L1,2(β), w

a
L2,2(β)

and wa
C2(β) = ∫

ρa
2 (ε)dε associated with the eigenvalue distribution of the local

state |Θ2〉. Corresponding total probabilities wall,2(β) =∑I w
a
I 2(β)+wa

C2(β) are
also shown. Again one finds wall,2(β) = 1 for each β, except for the anomal
point β = βa . In this point contribution of embedded eigenstates wa

C2(β) has a
sudden drop and wall,2(β) decreases from wall,2(β) = 1 to the value wall,2(βa) =
0.09399.

Probabilities shown in figures 10 and 11 display a lot of structure. Par-
ticularly interesting is the contribution wa

Cs(β) = ∫

ρa
s (ε)dε of all embedded

eigenstates to the total probability associated with a local state |Θs〉. This con-
tribution is the probability to find this state in any of the embedded eigenstates
|Ψ(ε)〉 (ε ∈ D). For example, consider probability wa

C2(β) shown in figure 11.
For each β > 0 the combined system S∞ contains isolated eigenstate |ΨL1〉 with
the eigenvalue εL1 < −1. If β < βR2 this is the only isolated eigenstate con-
tained in the combined system. However, for small enough β the contribution
wa

L1,2(β) of this eigenstate to the total probability wall,2(β) = 1 is negligible
(see section 4.2 and figure 5(a)). Hence wa

C2(β) ≈ 1. As β increases, wa
L1,2(β)

increases and hence wa
C2(β) slightly decreases. In the anomal point β = βa

probability wa
C2(β) abruptly decreases to a very low value. This is due to the

existence of the isolated eigenstate in this point (see section 4.4). As β further
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increases, this probability initially reassumes its former value and then it con-
tinues to decrease. As β crosses the point β = βR2 combined system acquires
right isolated eigenstate |ΨR2〉 with the eigenvalue εR2 > 1. The corresponding
probability wa

R2,2 abruptly jumps from zero to wa
R2,2(βR2+) = 0.71062. Hence

probability wa
C2(β) abruptly decreases for the same amount. As the coupling

β further increases until the point β = βR1, the probability wa
C2(βR2) slowly

increases. After β crosses this point the combined system acquires another right
isolated eigenstate |ΨR1〉 with the eigenvalue εR1. The corresponding probabil-
ity wa

R1,2 again abruptly jumps from zero to wa
R1,2(βR1+) = 0.53733. Hence

probability wa
C2(β) abruptly decreases for the same amount. With the further

increase of β this probability continuously changes. First it slowly decreases,
then it increases, and when the contribution wa

L2,2 of the left isolated eigenstate
|ΨL2〉 becomes relatively significant, it starts again to decrease.

In conclusion, the probability wa
C2(β), considered as a function of the cou-

pling parameter β, exhibits a very complex behavior. No power series expansion
in a point β = 0 can reproduce this behavior beyond the first critical point. In
the above example this is anomal point β = βa and especially the point β =
βR2 where wa

C2(β) is discontinuous. Standard perturbation expansion approach
can not predict the existence of the isolated eigenstate |Ψa〉 in the anomal point
β = βa and it can not reproduce probability wa

C2(β) for β > βR2. The same
applies to all other quantities shown in figures 10 and 11. In fact, the situation
is even worse than that. For each β > 0 combined system S∞ contains isolated
eigenvalue εL1 that can not be obtained by the perturbation expansion. Hence,
strictly, perturbation expansion fails for each β > 0. However, if β is small the
contribution of the corresponding eigenstate |ΨL1〉 to the density ρa(ε) is negligi-
ble (see expression (47)). Hence perturbation expansion has still (limited) validity
in the case of such small β.

5. Conclusion

Exact nonperturbative method [5–7] for the treatment of the interaction of
a single state with the infinite quantum system Sb

∞ is generalized to the inter-
action of an arbitrary finite quantum system Sa

ρ with the infinite quantum sys-
tem Sb

∞. In order to emphasize the generalization Sa
1 → Sa

ρ , in a present paper
it is assumed that the system Sb

∞ contains only a single one-parameter eigen-
value band. All eigenvalues of this system are hence contained in the range D =
[λa, λb] consisting of a single interval. Generalization Sa

1 → Sa
ρ is a key step

toward a final goal to develop a general mathematical formalism for the descrip-
tion of an arbitrary finite quantum system Sa

ρ that interacts with an arbitrary
infinite quantum system Sb

∞ [8].
It is shown that the combined system S∞ ≡ Sa

ρ ⊕ Sb
∞ usually contains

two qualitatively different types of eigenvalues and eigenstates. First, the system
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S∞ may contain finite number of discrete eigenvalues εs with the corresponding
eigenstates. Those discrete eigenvalues are isolated eigenvalues. The correspond-
ing isolated eigenstates |Ψs〉 are normalized to unity. Combined system S∞ may
contain at most ρ left isolated eigenvalues εI ≡ εL < λa and at most ρ right
isolated eigenvalues εI ≡ εR > λb. Concerning isolated eigenvalues εr ∈ D,
those eigenvalues may exist only in the so-called “anomal” points. The number
and type of such points depends on the details of the interaction of the system
Sa
ρ with the system Sb

∞. In addition to isolated eigenvalues, each ε ∈ D is also
an eigenvalue of the combined system. This eigenvalue is a part of a continuous
band of eigenvalues and the corresponding eigenstates |Ψ(ε)〉 are normalized to
a δ-function. Those eigenvalues and the corresponding eigenstates are embedded
eigenvalues and eigenstates.

Isolated and embedded solutions of the combined system are described by
two key equations derived in this paper, a generic equation (10) and a fractional
shift equation (23a). Both are ρ × ρ eigenvalue equations and they both act in
the space Xa

ρ associated with the system Sa
ρ .

Generic equation (10) is a nonlinear eigenvalue equation. Hence it may
have more than ρ distinct eigenvalues and eigenstates. Each eigenvalue εI /∈ D of
this equation is an isolated eigenvalue of the combined system. Once this eigen-
value is known, one easily obtains the corresponding isolated eigenstate |ΨI 〉. In
particular, eigenstate |θI 〉 of this equation is proportional to the Xa

ρ-component
∣
∣Ψa

I

〉

of isolated eigenstate |ΨI 〉. Concerning eigenvalues εr ∈ D of this equation,
those eigenvalues are so called resonant points. A special type of resonant points,
so-called anomal points are shown to be isolated eigenvalues of the combined
system. The corresponding eigenstates determine related isolated eigenstates |Ψr 〉
[8]. Thus generic eigenvalue equation provides all isolated solutions of the com-
bined system.

For each ε ∈ D fractional shift equation is a linear eigenvalue equa-
tion. This equation is related to embedded solutions of the combined system.
In particular, Xa

ρ-component |Ψa(ε)〉 of embedded eigenstate |Ψ(ε)〉 is accord-
ing to the expression (25a) given in terms of the solution to this equation. As
far as embedded solutions are considered, this component determines all prop-
erties of the system Sa

ρ that interacts with the system Sb
∞. Thus generic equa-

tion (10) and fractional shift equation (23a) provide a key information for the
description of the system Sa

ρ that is not isolated but which interacts with sur-
rounding media (system Sb

∞). This is an exact description and no power series
expansion is involved. As emphasized above, in the present paper the system Sb

∞
is restricted to have only a single one-parameter eigenvalue band and no isolated
eigenstates. However, this method can be generalized to arbitrary quantum sys-
tems Sb

∞ [8]. When this is done one finds that the structure and the interpreta-
tion of the generic and fractional shift equation remains essentially unchanged
[8].
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Since the suggested method produces correct results however strong the
interaction between quantum systems Sa

ρ and Sb
∞, it can be applied to all those

cases where the standard perturbation expansion fails. If this interaction is weak,
one obtains standard results known from the perturbation expansion approach.
In particular, due to the interaction with the infinite system Sb

∞, each eigenvalue
EI of the finite system Sa

ρ that is contained outside the eigenvalue range D of
this infinite system moves to a new position εI , and it remains sharp. Each eigen-
value Er of the finite system Sa

ρ that is contained inside this eigenvalue range
also moves to a new position εr . However, since Er ∈ D this shifted eigenvalue
is usually not sharp and it acquires a finite width. In particular, if Er is nonde-
generate shifted eigenvalue εr ∈ D usually acquires the shape of the universal
resonance curve with a finite width �εr . Only in a special case when εr = εa
is an anomal point the width �εr drops to zero and in this case one has one or
several isolated solutions associated with this point [8]. If the interaction between
the systems Sa

ρ and Sb
∞ becomes strong this simple picture is destroyed, and

one may have much more complex behavior. In particular, various density dis-
tributions inside the range D in a case of a relatively strong interaction have no
resemblance to the universal resonance curve. This is also the region where stan-
dard perturbation expansion fails.

The method is illustrated with an example of a two-dimensional system Sa
2

that interacts with the infinite system Sb
∞. This infinite system contains a sin-

gle one-parameter eigenvalue band in the interval D ≡ [−1, 1]. It is shown that
all relevant probabilities and density distributions satisfy completeness relations
(56). Those relations are verified for a very wide range of a parameter β includ-
ing very weak as well as extremely strong interactions. The agreement of those
probabilities and density distributions with the completeness relations provides a
powerful verification of the suggested method.
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Appendix A

A.1. Solution of a finite combined system Sn+ρ

Consider n-dimensional system Sb
n described by the eigenvalue equation

B |Φi 〉 = λi |Φi 〉 , i = 1, . . . , n, (A.1a)
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where B is a Hermitian operator acting in the n-dimensional space Xb
n . Eigen-

states |Φi 〉 of B can be orthonormalized according to
〈

Φi
∣
∣ Φ j

〉 = δi j . (A.1b)

Let the system Sb
n interact with the system Sa

ρ described by the eigenvalue
equation (1a). This interaction can be written in the form β V where V is a Her-
mitian operator that connects the states |Θs〉 ∈ Xa

ρ with the states |Φi 〉 ∈ Xb
n and

where β � 0 is a coupling parameter. Combined system Sn+ρ ≡ Sa
ρ ⊕ Sb

n that
includes this interaction is described by the generalized eigenvalue equation

C |Ψk〉 = εk S |Ψk〉 , k = 1, . . . , n + ρ, (A.2a)

where

C = A + B + β V, S = Sa + Ib. (A.2b)

and where Ib is a unit operator in Xb
n . The solution to the finite combined sys-

tem Sn+ρ can be obtained in the closed form [12]. This system may contain sin-
gular eigenvalues εk ∈ {λi } and cardinal eigenvalues εk /∈ {λi } [12].

Let {|χs〉} be an arbitrary base in Xa
ρ . There is a unique operator K such

that representation of K in this base is a unit matrix (see equation (4a)). Solu-
tions of the eigenvalue equation (A.2) can be expressed in this base. Concerning
cardinal eigenvalues one finds [12]:
(a) εk /∈ {λi } is an eigenvalue of Sn+ρ if and only if it is a root of the function
h(ε):

h(ε) ≡
∣
∣
∣β

2Ω(ε)+ A − ε Sa
∣
∣
∣ = 0, (A.3a)

where A and Sa are ρ × ρ Hermitian matrices with matrix elements (5), while
Ω(ε) is a ρ × ρ Hermitian matrix with matrix elements Ωsp(ε)

Ωsp(ε) =
n
∑

i

〈χs | V |Φi 〉
〈

Φi
∣
∣ V
∣
∣χp
〉

ε − λi
, s, p = 1, . . . , ρ. (A.3b)

(b) If εk /∈ {λi } is an eigenvalue of the system Sn+ρ , each normalized eigenstate
corresponding to this eigenvalue is of the form [12]

|Ψk〉 = 1√
Qk

[
ρ
∑

s

C (k)
s |χs〉 + β

n
∑

i

∑ρ
s 〈Φi | V |χs 〉 C (k)

s

εk − λi
|Φi 〉

]

, (A.4a)

where

Qk =
ρ
∑

s,p

C (k)∗
s Sa

spC (k)
p + β2

n
∑

i

∣
∣
∣

∑ρ
s 〈Φi | V |χs 〉 C (k)

s

∣
∣
∣

2

(εk − λi )
2

, (A.4b)
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and where coefficients C (k)
s are components of a column vector C(k) which is a

nontrivial solution of a matrix equation
[

β2Ω(εk)+ A
]

C(k) = εkSaC(k)
. (A.4c)

Eigenstates |Ψk〉 are normalized according to the metrics induced by the
operator S = Sa + Ib, that is one has 〈Ψk | S |Ψk 〉 = 1. More generally, those
eigenstates can be orthonormalized according to

〈Ψk | S |Ψl 〉 = δkl . (A.5)

If εk 	= εl relation (A.5) is automatically satisfied [12]. However, if εk = εl
this relation can be enforced by any of the standard procedures such as Gramm–
Schmidt orthonormalization [11].

Expressions (A.3) and (A.4) produce all cardinal solutions of the combined
system Sn+ρ . There are analogous expressions for singular solutions of this sys-
tem [12]. However, cardinal solutions are most important and most numerous.
In particular, if all eigenvalues λi of the unperturbed system Sb

n are nondegener-
ate, rather special conditions are required in order for the system Sn+ρ to have
singular solutions [12].

In addition to the above expressions, we need the interlacing rule [12].
Let the unperturbed eigenvalues λi be arranged in the nondecreasing order.

Let the perturbed eigenvalues εk be also arranged in the nondecreasing order.
Eigenvalues λi and εk thus arranged satisfy [12]

εi � λi � εi+ρ, i = 1, . . . , n. (A.6a)

In particular

λ1 � ερ+1, εn � λn. (A.6b)

Above rule applies to all eigenvalues of the combined system. If the partic-
ular eigenvalue εk is cardinal, corresponding inequality (�) should be replaced
with strict inequality (<).

Eigenvalue equations (1a) and (A.2) are generalized eigenvalue equations
involving operators Sa and S that may satisfy Sa 	= Ia and S 	= In+ρ ≡
Ia + Ib. One has to be careful how to define probabilities in systems Sa

ρ and
Sn+ρ in the case of such generalized eigenvalue equations. Consider system Sa

ρ

that is described by the eigenvalue equation (1a). Let |Θ〉 ∈ Xa
ρ be an arbitrary

state in Xa
ρ and let ws be probability to find this state in the local state |Θs〉

(s = 1, . . . , ρ). Those local states form a complete set in Xa
ρ and they are mutu-

ally exclusive eigenstates of the system Sa
ρ . Hence one should have

ρ
∑

s

ws = 1. (A.7a)
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Standard definition ws = |〈Θ | Θs〉|2 does not satisfy this condition. One
finds that in order to satisfy (A.7a) for each state |Θ〉 ∈ Xa

ρ one has to define
probabilities ws according to

ws = ∣∣〈Θ ∣
∣ Sa |Θs

〉∣
∣2 , s = 1, . . . , ρ, (A.7b)

where local states |Θs〉 are orthonormalized according to (1b) and where the
state |Θ〉 is normalized according to

〈

Θ
∣
∣ Sa |Θ 〉 = 1. (A.7c)

This follows from the expression (1c). Using this expression one easily
proves that probabilities ws defined according to (A.7b) satisfy requirement
(A.7a) for each state |Θ〉 ∈ Xa

ρ . Those probabilities are defined in accord with
the metrics induced by the operator Sa . In a similar way and in accord with a
metrics induced by the operator S are defined probabilities in the combined sys-
tem Sn+ρ .

A.2. System S∞ as the n → ∞ limit of finite-dimensional systems Sn+ρ

In order to solve eigenvalue equation (3), we approximate system Sb
∞ with

a finite dimensional system Sb
n containing n eigenvalues and n eigenstates. As

shown in a previous section, the solution to the corresponding combined system
Sn+ρ can be obtained in the closed form. Our general strategy is to derive an
appropriate n → ∞ limit of this solution. Provided this limit is well defined, it
represents the solution to the system S∞.

Let λ(k) be continuous function of k in the interval [ka, kb]. Let further this
function be monotonic increasing in this interval. Partition this interval into n
subintervals of equal length �k = (kb − ka)/n. Midpoints of those subinter-
vals are ki = ka + (i − 1/2) �k (i = 1, . . . , n). Replace function λ(k) with n
values λi ≡ λ(ki ) sampled at those midpoints. Those n values are eigenvalues
of the finite unperturbed system Sb

n that approximates unperturbed system Sb
∞.

Since λ(k) is an increasing function of k, each λi is a nondegenerate eigenvalue
of Sb

n. Next, replace each function 〈χs | V |Φ(k)〉 (s = 1, . . . , ρ) with n values
〈χs | V |Φi 〉 (i = 1, . . . , n) sampled at midpoints ki [5]

〈χs | V |Φi 〉 = 〈χs | V |Φ(ki )〉
√
�k, i = 1, . . . , n. (A.8a)

Proportionality constant (
√
�k) follows from the normalization condition

∫

|Φ(k)〉 〈Φ(k)| dk ⇔
∑

i

|Φi 〉 〈Φi |. (A.8b)

According to (A.3) and (A.4), cardinal solutions of the combined system
Sn+ρ (eigenvalues and eigenstates) can be expressed in terms of the unperturbed
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eigenvalues λi , in terms of matrix elements 〈χs | V |Φi 〉, and in terms of matrices
A and Sa . The above procedure determines eigenvalues λi and matrix elements
〈χs | V |Φi 〉, while matrices A and Sa are known since they describe isolated
system Sa

ρ . Hence this procedure effectively approximates infinite-dimensional
system S∞ with (ρ + n)-dimensional system Sn+ρ . As n increases, system Sn+ρ
converges to the system S∞ and the solution of the former system converges to
the solution of the latter system. In addition to cardinal solutions, system Sn+ρ
may contain singular solutions. However, more detailed analyses shows that one
can always approximate infinite system S∞ to any desired degree of accuracy
with a finite system Sn+ρ that contains no singular solutions. Relations (A.3) and
(A.4) are hence sufficient for the derivation of the required n → ∞ limit, and
explicit relations for the singular solutions are not needed.

Interlacing rule (A.6) implies that in a limit n → ∞ one can have two quali-
tatively different solutions of the combined system S∞. Eigenvalues λi ≡ λ(ki ) of
the finite unperturbed system Sb

n are confined to the interval D = [λa, λb] where
λa = λ(ka) and λb = λ(kb). As n increases, λ1>λa converges to λa while λn<λb
converges to λb. In a limit n → ∞ unperturbed eigenvalues λi are dense in D.
Due to the interlacing rule, perturbed eigenvalues ερ+1, . . . , εn are also dense in
this interval. Hence in a limit n → ∞ each ε ∈ D is a perturbed eigenvalue. We
call such eigenvalues of the combined system embedded eigenvalues [5–7]. Each
embedded eigenvalue is a part of a continuous band of eigenvalues, and the cor-
responding eigenstates |Ψ(ε)〉 are normalized to a δ-function in accord with the
metrics defined by the operator S.

In addition to the embedded eigenvalues, there are 2ρ perturbed eigenvalues
that in a process n → ∞ may (but need not) escape the interval D. According to
(A.6b) those are ρ perturbed eigenvalues ε1, . . . , ερ that may satisfy εk<λa , and
ρ perturbed eigenvalues εn+1, . . . , εn+ρ that may satisfy εk>λb. Let �D be a com-
plement of D. We call each perturbed eigenvalue εI ∈ �D of S∞ an isolated eigen-
value. Since this eigenvalue is outside the eigenvalue band D, it is discrete. The
corresponding eigenstate |ΨI 〉 can be hence normalized to unity. In this respect
isolated eigenstates |ΨI 〉 of S∞ are similar to local states |Θs〉 ∈ Xa

ρ that are
also normalized to unity. There are at most ρ left isolated eigenvalues (and cor-
responding eigenstates) εL<λa and at most ρ right isolated eigenvalues (and cor-
responding eigenstates) εR>λb.

It will be shown in the following sections that the range D may contain
some characteristic points εr ∈ D in which the process n → ∞ leads to the cre-
ation of isolated eigenvalues and eigenstates. Hence, in addition to the isolated
eigenvalues εI ∈ �D, the system S∞ may also contain some isolated eigenvalues
εr ∈ D.
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A.3. Isolated eigenvalues εI ∈ �D and corresponding eigenstates

Since isolated eigenvalue εI ∈ �D is outside the range D, it is relatively
easy to obtain the n → ∞ limit of relations (A.3) and (A.4). In particular,
using expression (A.8b) summation over i in (A.3b) is replaced with an integral
according to

Ωsp(ε) → ωsp(ε) =
kb∫

ka

〈

χs | V |Φ(k) 〉 〈Φ(k) ∣∣ V
∣
∣χp
〉

ε − λ(k)
dk, ε ∈ �D.

Hence and from (A.3) one derives (11) where matrix elements ωsp(ε) of the oper-
ator ω(ε) are given by (8b) or by the equivalent expression (8c). In a similar way
one derives all remaining relations concerning isolated eigenvalues εI ∈ �D and
the corresponding eigenstates. In particular, orthonormality (A.5) of the eigen-
states of a finite combined system Sn+ρ implies orthonormality (13) of isolated
eigenstates |ΨI 〉 of the combined system S∞. Generic eigenvalue equation (10)
for the case εs /∈ D is also derived in this way.

A.4. Embedded eigenvalues and eigenstates

Concerning embedded eigenvalues and eigenstates, one has to be more care-
ful. Each ε ∈ D is an embedded eigenvalue of the combined system S∞ and the
transition to the limit n → ∞ of the relations (A.3) and (A.4) is not so sim-
ple. For the special case ρ = 1 this transition was done elsewhere [5, 6]. In order
to derive correct n → ∞ limit for the case ρ 	= 1, we will use the same gen-
eral approach. Only the main points of this approach will be outlined. For more
detailed discussion the reader may consult reference [5].

A.4.1. Derivation of the fractional shift equation
Consider the system Sn+ρ for some huge n. Define (n − ρ) quantities x(εk)

according to (22). Each x(εk) is a fractional shift of the perturbed eigenvalue
εk ∈ D relative to the unperturbed eigenvalue λk−1 ∈ D [5, 6]. Interlacing rule
(A.6) implies

λk−ρ − λk−1

λk − λk−1
� x(εk) � 1. (A.9a)

In particular, in the case ρ = 1 one has 0 � x(εk) � 1 [5].
Let the finite system Sn+ρ approximate infinite system S∞ as described in

section A.2. If functions λ(k) and 〈χs | V |Φ(k)〉 are reasonably smooth, one can
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expand those functions in the point k = kk to obtain

λk+ j ≡ λ(kk+ j ) = λ(kk)+ (dλ/dk)k j�k + O( j2/n2), (A.10a)
〈

χs
∣
∣ V
∣
∣Φ(kk+ j )

〉 = 〈χs | V |Φ(kk)〉 + O( j/n), s = 1, . . . , ρ, (A.10b)

where (dλ/dk)k is a derivative of a function λ(k) in a point k = kk and where
O(x) is small quantity of the order x . In particular, (A.10a) implies

�λk+ j ≡ λk+ j − λk+ j−1 = (dλ/dk)k�k + O( j2/n2). (A.10c)

If (dλ/dk)k 	= 0 intervals �λk+ j between two adjacent unperturbed eigen-
values are of the order O(n−1). Since for sufficiently big n one has O(ρ2/n2) =
O(n−2), relations (A.9a) and (A.10a) imply

1 − ρ + O(n−1) � x(εk) � 1. (A.9b)

Fractional shift is thus confined to the well-defined finite interval. Accord-
ing to (22), if x(εk) = 1 one has εk = λk , while if x(εk) = 0 one has εk = λk−1. In
both cases perturbed eigenvalue εk equals some unperturbed eigenvalue λi and
εk is hence a singular eigenvalue of the combined system Sn+ρ . Neglecting terms
of the order O(n−1), the same applies to all other integer values x(εk). Hence in
a limit n → ∞ integer values of the fractional shift x(ε) correspond to the sin-
gular eigenvalue of the combined system, while all other values correspond to
cardinal eigenvalues of this system. In addition and according to (A.9b), in this
limit fractional shift x(ε) satisfies (24).

Let εk /∈ {λi } be a cardinal eigenvalue of a finite system Sn+ρ and let this
eigenvalue be embedded in the range D. Consider the n → ∞ limit of a matrix
Ω(εk). Each matrix element Ωsp(εk) of this matrix can be written as a sum of
two components

Ωsp(εk) = Ω(0)
sp (εk)+Ω(1)

sp (εk), (A.11a)

where

Ω(0)
sp (εk) =

N (n)
∑

j=−N (n)

〈

χs
∣
∣ V
∣
∣Φk+ j

〉 〈

Φk+ j
∣
∣ V
∣
∣χp
〉

εk − λk+ j
, (A.11b)

Ω
(1)
sp (εk) = ∑

j<−N (n)

〈χs|V|Φk+ j 〉〈Φk+ j |V|χp 〉
εk−λk+ j

+ ∑

j>N (n)

〈χs|V|Φk+ j 〉〈Φk+ j |V|χp 〉
εk−λk+ j

.

(A.11c)

Choose N (n) = ⌊n1/3
⌋

to be the largest integer smaller than n1/3. With this
choice component Ω(0)

sp (εk) contains contributions to the matrix element Ωsp(εk)

from approximately 2n1/3 unperturbed eigenvalues λk+ j that are close to the
perturbed eigenvalue εk , while component Ω(1)

sp (εk) contains contributions from
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approximately (n − 2n1/3) ≈ n remaining unperturbed eigenvalues λk+ j that are
relatively far from the perturbed eigenvalue εk .

Consider component Ω(0)
sp (εk). Since | j |<n1/3 and according to (A.10b),

for large enough n one has
〈

χs
∣
∣ V
∣
∣Φ(kk+ j )

〉 ≈ 〈χs | V |Φ(kk)〉 and hence
〈

χs
∣
∣ V
∣
∣Φk+ j

〉 ≈ 〈χs | V |Φk 〉. Thus one can factor out constant term 〈χs | V |Φk 〉
〈

Φk
∣
∣ V
∣
∣χp
〉

under the summation sign in (A.11b). Using relations (A.8a) and
(A.10) as well as the definition (22) of a fractional shift one finds

Ω(0)
sp (εk) ≈ 〈χs | V |Φ(kk)〉

〈

Φ(kk)
∣
∣ V
∣
∣χp
〉

(dλ/dk)k

N (n)
∑

j=−N (n)

1
x(εk)− j

With the identity [14]

1
x

+
∞
∑

j=1

(
1

x − j
+ 1

x + j

)

= π cot(πx). (A.12)

this implies

Ω(0)
sp (εk) ≈ π

〈χs | V |Φ(kk)〉
〈

Φ(kk)
∣
∣ V
∣
∣χp
〉

(dλ/dk)k
cot (πx(εk)) .

As n increases this approximation improves and in a limit n → ∞ it is exact
[5]. Since λ(kk) ≈ εk one has

〈χs | V |Φ(kk)〉
〈

Φ(kk)
∣
∣ V
∣
∣χp
〉

(dλ/dk)k
→ 〈χs | V |Φ(k)〉 〈Φ(k) ∣∣ V

∣
∣χp
〉

dλ/dk

∣
∣
ε=λ(k) = fsp(ε).

(A.13)

Hence in the limit n → ∞ component Ω(0)
sp (εk) of Ωsp(εk) should be replaced

according to

Ω(0)
sp (εk) → π fsp(ε) cot (πx(ε)) , ε ∈ D.

In a similar way one finds that in this limit component Ω(1)
sp (εk) should be

replaced according to [5]

Ω(1)
sp (εk) → ωsp(ε) = P

∫ kb

ka

〈χs | V |Φ(k)〉 〈Φ(k) ∣∣ V
∣
∣χp
〉

ε − λ(k)
dk, ε ∈ D,

where P denotes principal Cauchy integral value [10].
Using expression (6b), functions ωsp(ε) can be expressed in terms of func-

tions fsp(ε) according to (8b). This implies (8a). Further, in a limit n → ∞
components C (k)

s ≡ Cs(εk) of C(k) ≡ C(εk) become continuous functions of ε,
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i.e. C (k)
s → Cs(ε). Combining all those results one finds that in a limit n → ∞

matrix equation (A.4c) translates into

ρ
∑

p

[

β2ωsp(ε)+ Asp − ε Sa
sp

]

C p(ε) = X (ε)
ρ
∑

p

fsp(ε)C p(ε), s = 1, . . . , ρ,

(A.14a)

where

X (ε) = −πβ2 cot (πx(ε)) . (A.14b)

Expression (A.14a) is a generalized eigenvalue equation with the eigenvalue
X (ε) and with the corresponding eigenvector(s) C(ε). Since in a limit n → ∞
one has C (k)

s → Cs(ε), expressions (4a) and (A.4a) imply Cs(ε) ∝ 〈χs | K |Ψ(ε)〉
where |Ψ(ε)〉 is embedded eigenstate of the combined system. Hence one finds
that this matrix eigenvalue equation is equivalent to the eigenvalue equation (23)
and that components Cs(ε) of C(ε) are connected to the eigenstate |ψ(ε)〉 of (23)
according to

Cs(ε) = 〈χs | K |ψ(ε)〉 . (A.14c)

Eigenstate |ψ(ε)〉 of (23a) is hence proportional to the Xa
ρ-component

|Ψa(ε)〉 of the eigenstate |Ψ(ε)〉 of the combined system. Proportionality con-
stant will be derived in the next section.

Note the difference between eigenvalue equation (A.14a) derived above and
the original eigenvalue equation (A.4c) that applies to a finite system Sn+ρ . Solu-
tions to (A.4c) are perturbed eigenvalues εk and the corresponding eigenvectors
C(k). As n increases eigenvalues εk (k = ρ + 1, . . . , n) become dense in the
interval D, and in a limit n → ∞ each ε ∈ D becomes an eigenvalue of the com-
bined system. There is hence no information contained in the particular eigen-
value ε ∈ D. According to (A.14b) this information about eigenvalues is in the
equation (A.14a) replaced with the information about the fractional shift x(ε).
For almost each ε ∈ D this quantity is well defined and it contains a nontriv-
ial information about the embedded eigenstates of the combined system. Accord-
ingly, we call eigenvalue equation (A.14) a fractional shift equation. This is our
key equation for the description of the embedded solutions of a combined sys-
tem.

A.4.2. Derivation of the Xa
ρ-component of the normalized eigenstate |Ψ(ε)〉

In order to derive component |Ψa(ε)〉 ∈ Xa
ρ of the normalized eigenstate

|Ψ(ε)〉 = |Ψa(ε)〉+∣∣Ψb(ε)
〉

of the infinite combined system S∞, we again consider
finite combined system Sn+ρ and analyze Xa

ρ-component of the corresponding
eigenstates |Ψk〉 in a limit n → ∞.
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Normalized eigenstate (A.4a) of a finite system Sn+ρ can be written as a
sum of three terms

|Ψk〉 = 1√
Qk

[

|Zk〉 + β

∣
∣
∣Ψ

(0)
k

〉

+ β

∣
∣
∣Ψ

(1)
k

〉]

, (A.15a)

where

|Zk〉 =
ρ∑

s
C (k)

s |χs〉 ∈ Xa
ρ, (A.15b)

∣
∣
∣Ψ

(0)
k

〉

=
M(n)∑

j=−M(n)

〈Φk+ j |V|Zk 〉
εk−λk+ j

∣
∣Φk+ j

〉 ∈ Xb
n, (A.15c)

∣
∣
∣Ψ

(1)
k

〉

= ∑

j<−M(n)

〈Φk+ j |V|Zk 〉
εk−λk+ j

∣
∣Φk+ j

〉+ ∑

j>M(n)

〈Φk+ j |V|Zk 〉
εk−λk+ j

∣
∣Φk+ j

〉 ∈ Xb
n,

(A.15d)

and where

Qk = 〈Zk | Sa |Zk 〉 + β2
〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

+ β2
〈

Ψ
(1)
k

∣
∣
∣ Ψ

(1)
k

〉

. (A.15e)

In the above expressions choose M(n) = ⌊

n2/3
⌋

to be the largest integer

smaller than n2/3. With this choice function
∣
∣
∣Ψ

(0)
k

〉

contains contributions to the

perturbed eigenstate |Ψk〉 from approximately 2n2/3 unperturbed states
∣
∣Φk+ j

〉 ∈
Xb

n whose eigenvalues λk+ j are close to εk , while function
∣
∣
∣Ψ

(1)
k

〉

contains contri-

butions from approximately (n − 2n2/3) ≈ n remaining states
∣
∣Φk+ j

〉 ∈ Xb
n .

Let us estimate quantity Qk that determines normalization of the eigenstate
|Ψk〉. One has

〈Zk | Sa |Zk 〉 =
ρ∑

s,p
C (k)∗

s Sa
spC (k)

p , (A.16a)

〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

=
M(n)∑

j=−M(n)

〈Zk|V|Φk+ j 〉〈Φk+ j |V|Zk 〉
(εk−λk+ j )

2 , (A.16b)

〈

Ψ
(1)
k

∣
∣
∣ Ψ

(1)
k

〉

= ∑

j<−M(n)

〈Zk|V|Φk+ j 〉〈Φk+ j |V|Zk 〉
(εk−λk+ j )

2 + ∑

j>M(n)

〈Zk|V|Φk+ j 〉〈Φk+ j |V|Zk 〉
(εk−λk+ j )

2 .

(A.16c)

Matrix element 〈Zk | Sa |Zk 〉 is of the order O(1). Concerning
〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

,

note that all terms under summation sign in (A.16b) satisfy | j | � n2/3. Hence
〈

Zk
∣
∣ V
∣
∣Φk+ j

〉 ≈ 〈Zk | V |Φk 〉 and relations (A.8a), (A.10a) and (22) imply [5]

〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

≈ 1
�λk

〈Zk | V |Φ(kk)〉 〈Φ(kk) | V |Zk 〉
(dλ/dk)k

M(n)
∑

j=−M(n)

1

(x(εk)− j)2
.
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As n increases above expression is more and more exact. Since M(n) ≈
n2/3 one can in a limit n → ∞ extend summation over j to the interval j ∈
(−∞,∞). Further, if one takes derivation of (A.12) with respect to x one finds

∞
∑

j=−∞

1

(x − j)2
= π2

sin2(πx)
.

Hence for sufficiently big n one has

〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

≈ 1
�λk

〈Zk | V |Φ(kk)〉 〈Φ(kk) | V |Zk 〉
(dλ
/

dk)k

π2

sin2 (πx(εk))
. (A.17a)

Intervals �λk scale as O(n−1). This implies that if lim
n→∞ 〈Zk | V |Φ(kk)〉 	=

0 the quantity
〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

scales at least as O(n). Similar analyzes shows that
〈

Ψ
(1)
k

∣
∣
∣ Ψ

(1)
k

〉

scales not faster than O(n2/3) [5]. Hence, provided in a limit n →
∞ one has 〈Zk | V |Φ(kk)〉 	= 0, one can in this limit neglect

〈

Ψ
(1)
k

∣
∣
∣ Ψ

(1)
k

〉

and

〈Zk | Sa |Zk 〉 relative to
〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

. In this case

Qk ≈ β2
〈

Ψ
(0)
k

∣
∣
∣ Ψ

(0)
k

〉

. (A.17b)

In analogy to (A.7b), probability to find the state |Θ〉 ∈ Xa
ρ in the state |Ψk〉

equals wk = |〈Θ | S |Ψk 〉|2 ≡ |〈Θ | Sa |Ψk 〉|2 where |Θ〉 is normalized according
to 〈Θ | Sa |Θ〉 = 1. Expression (A.4a) implies 〈Θ | Sa |Ψk 〉 = 〈Θ | Sa |Zk 〉 /√Qk .
Hence and from (A.17)

wk ≈ �λk
|〈Θ | Sa |Zk 〉|2 (dλ/dk)k

β2 〈Zk | V |Φ(kk)〉 〈Φ(kk) | V |Zk 〉
sin2 (πx(εk))

π2
.

Using (A.13) and (A.15b) this equals

wk ≈ �λk

∣
∣
∣
∣

∑

s
〈Θ | Sa |χs 〉 C (k)

s

∣
∣
∣
∣

2

β2
∑

sp
C (k)∗

s f sp(εk)C
(k)
p

sin2 (πx(εk))

π2
. (A.18)

Let |Ψ(ε)〉 be an eigenstate of the infinite system S∞ corresponding to the
eigenvalue ε. In the limit n → ∞ one has �λk → dλ, �εk → dε and C (k)

s ≡
Cs(εk) → Cs(ε). In this limit discrete probabilities wk are replaced with the prob-
abilities |〈Θ | Sa |Ψ(ε)〉|2 dε to find the state |Θ〉 in the eigenstate |Ψ(ε)〉 and in
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the eigenvalue interval dε. By definition, ρΘ(ε) = |〈Θ | Sa |Ψ(ε)〉|2 is a probabil-
ity density to find a state |Θ〉 in the eigenstate |Ψ(ε)〉. One can further show that
in a limit n → ∞ almost for each ε one has dλ = dε [5]. Hence and from (A.18)

ρΘ(ε) =
∣
∣
∑

s 〈Θ | Sa |χs 〉 Cs(ε)
∣
∣2

β2
∑

sp C∗
s (ε) fsp(ε)C p(ε)

sin2 (πx(ε))

π2
.

Density ρΘ(ε) determines probability amplitude 〈Θ | Sa |Ψ(ε)〉 up to an
arbitrary phase. One can always adjust the phase of |Ψ(ε)〉 in such a way as to
satisfy

〈

Θ
∣
∣ Sa |Ψ(ε) 〉 =

∑

s 〈Θ | Sa |χs 〉 Cs(ε)

β
√
∑

sp C∗
s (ε) fsp(ε)C p(ε)

sin (πx(ε))

π
. (A.19)

This expression is valid for each |Θ〉 ∈ Xa
ρ . Hence it determines

Sa |Ψ(ε)〉. Since Sa |Ψ(ε)〉 ∈ Xa
ρ and since Sa is regular in Xa

ρ , this determines
Xa
ρ-component |Ψa(ε)〉 of the eigenstate |Ψ(ε)〉. Explicit form of this component

can be obtained using relations (4b) and (A.14c). One thus derives expression
(25a). This is our key expression that gives component |Ψa(ε)〉 ∈ Xa

ρ of the nor-
malized eigenstate |Ψ(ε)〉 of S∞ in terms of the fractional shift x(ε) and in terms
of the eigenstate |ψ(ε)〉 of a fractional shift equation.

In a previous section we have derived fractional shift equation (A.14) as the
n → ∞ limit of the eigenvalue equation (A.4c). In this section we have derived
expression (25a) as the n → ∞ limit of the Xa

ρ-component of the normalized ei-
genstate (A.4a). Derivation of both expressions involves some assumptions that
are not always satisfied. For example, in the derivation of the expression (25a)
via expressions (A.17) and (A.19), we have assumed that in a limit n → ∞
one has 〈Zk | V |Φ(kk)〉 	= 0. In terms of the eigenstate |ψ(ε)〉 of the fractional
shift equation, this translates into the requirement 〈ψ(ε) | V |Φ(k)〉 ∣∣ε=λ(k) 	= 0,
which implies f(ε) |ψ(ε)〉 	= 0. More detailed analysis shows that key expres-
sions (A.14) and (A.19) are valid almost everywhere in the range D, with pos-
sible exception of characteristic points ε ∈ D that are defined in section 3.4.2.
With an appropriate interpretation, those expressions are valid in most of those
characteristic points. Exceptions are so called anomal points εa ∈ D where the
combined system may contain isolated eigenstates. By definition, εa ∈ D is an
anomal point if there is a nontrivial state |θ〉 ∈ Xa

ρ that satisfies H(εa) |θ〉 = 0
and also f(εa) |θ〉 = 0.

Finally a general comment. Expressions (10) and (23) valid in the case of
the infinite dimensional space Xb∞ are derived from the expressions that apply
to the finite dimensional space Xb

n . This derivation is possible due to two crucial
characteristics of the equations that describe the interaction of the local system
Sa
ρ with the finite-dimensional system Sb

n. First, key expression (A.4c) is a ρ×ρ
(nonlinear) eigenvalue equation, however large the system Sb

n. Hence the process
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n → ∞ does not change the dimension ρ of this equation. Second, expressions
(A.3.4) are exact. There is hence no deterioration of the obtained results (due to
the gradual accumulation of error) in the process n → ∞. Both properties are
crucial for the successful transition to the limit n → ∞. In particular, standard
perturbation methods are inappropriate to achieve this goal.

A.4.3. Solution of the fractional shift equation in the base {|φs(ε)〉}
One can obtain an exact solution of the fractional shift equation in the

base {|φs(ε)〉} of the eigenstates of the eigenvalue equation (27a). Those eigen-
states can be orthonormalized according to (27b). Eigenstate |Ψ(ε)〉 of a frac-
tional shift equation can be expressed as a linear combination (28a). Inserting
this expression into (23a), multiplying from left by 〈φs(ε)| and using (27b) one
finds

X (ε)α∗
s (ε)

ρ
∑

p

αp(ε)C p(ε) = (ηs(ε)− ε) Cs(ε), s = 1, . . . , ρ, ε ∈ D.

(A.20)

where functions αs(ε) are given by (29a) while unknown coefficients Cs(ε) satisfy
(28b).

In terms of the characteristic points (section 3.4.2) one finds that the point
ε = εc is critical if and only if αs(εc) = 0 (s = 1, . . . , ρ) while the point ε = εr
is resonant (εr ∈ Ξ) if and only if there is at least one function ηs(ε) such that
ηs(εr ) = εr . It is convenient to define Ξr as the set of all indices s such that
ηs(εr ) = εr . Using this definition one finds that resonant point ε = εr is active
if and only if there is at least one function αs(ε) (s ∈ Ξr ) such that αs(εr ) 	= 0.
Otherwise it is passive.

Let us now analyze expression (A.20) in terms of characteristic points. Con-
sider first the case when ε ∈ D is not a resonant point:
(a) The point ε ∈ D is not a resonant point (ε /∈ Ξ) :

If ε ∈ D is not a resonant point, H(ε) is regular and hence ηs(ε) 	= ε for
each s = 1, . . . , ρ. One can divide both sides of (A.20) with (ηs(ε)− ε) (s =
1, . . . , ρ) to obtain

Cs(ε) = K (ε)
α∗

s (ε)

ε − ηs(ε)
, s = 1, . . . , ρ, (A.21a)

where

K (ε) = −X (ε)
ρ
∑

p

αp(ε)C p(ε). (A.21b)

As shown in section 3.4.3, if ε is not a critical point, trivial solution of a
fractional shift equation is not allowed. Hence (A.21a) implies K (ε) 	= 0, since
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otherwise Cs(ε) = 0 (s = 1, . . . , ρ) which is a trivial solution. Inserting (A.21a)
into (A.21b) and canceling out K (ε) 	= 0 one derives (30a). This implies x(ε) 	=
0.5. Further, since K (ε) 	= 0 one can without loss of generality normalize eigen-
state |ψ(ε)〉 with K (ε) = 1. This implies (30b). Thus if ε is not a critical point,
fractional shift equation has a unique solution (30) and fractional shift x(ε) sat-
isfies x(ε) 	= 0.5.

Consider now a critical point ε = εc /∈ Ξ. In a critical point one has
αs(εc) = 0 (s = 1, . . . , ρ). Hence (A.21a) implies Cs(ε) = 0 (s = 1, . . . , ρ).
Thus in a critical point only a trivial eigenstate |ψ(εc)〉 = 0 is possible. This also
follows from (30b). Concerning the corresponding eigenvalue, this eigenvalue is
not fixed by the expression (A.21). However and as explained in section 3.4.3,
in a critical point one should have x(εc) = 0. Since expression (30a) implies
lim
ε→εc

x(ε) = 0, the value x(εc) = 0 is consistent with the continuity of the

function x(ε) in a critical point.
In conclusion, if ε /∈ Ξ there is a unique fractional shift x(ε) and (up to the

normalization and phase) unique eigenstate |ψ(ε)〉 of a fractional shift equation.
This eigenstate is trivial in a critical point and nontrivial otherwise. In addition,
if ε /∈ Ξ one has x(ε) 	= 0.5. Those conclusions are in accord with a general dis-
cussion in section 3.4.3. Expressions (30a) also imply that, provided αs(ε) and
ηs(ε) (s = 1, . . . , ρ) are continuous functions of ε, fractional shift x(ε) is also
continuous function of ε. Thus fractional shift x(ε), considered as a continu-
ous function of ε, may cross the value x(ε) = 0.5 only in some resonant point
εr ∈ Ξ.

Let us clarify implications of the above requirement K (ε) 	= 0 when ε is not
a critical point. According to (A.21b), this requirement seems to imply condi-
tions X (ε) 	= 0 and

∑

p αp(ε)C p(ε) 	= 0. According to (30a) and since ηs(ε) 	= ε

(s = 1, . . . , ρ), first condition X (ε) 	= 0 is automatically satisfied. However, the
second condition is not strictly required. Assume namely

∑

p αp(ε0)C p(ε0) = 0
for some ε = ε0. Since in a limit ε → ε0 one has

∑

p αp(ε)C p(ε) → 0 and since
K (ε0) 	= 0, in this limit one must have X (ε) → ∞ which implies x(ε0) = 0. The
point ε = ε0 is hence a singular point. This shows that the solution in the point
ε0 /∈ Ξ is singular if and only if this point satisfies (31). In addition, each critical
point εc /∈ Ξ satisfies this condition and it is hence also a singular point. This is
in accord with a general discussion in section 3.4.3.
(b) The point ε = εr is a resonant point (εr ∈ Ξ) :

If ε = εr ∈ D is resonant, H(εr ) is singular and hence there is at least one
ηs(εr ) such that ηs(εr ) = εr . The set Ξr is hence nonempty. There are two pos-
sibilities, the point εr is either active or passive.
(b1) Resonant point εr ∈ Ξ is active:

If εr is active, there is at least one s ∈ Ξr such that αs(εr ) 	= 0. One finds
that in this case (A.20) has always a solution that satisfies X (εr ) = 0. General
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type of this solution is:

X (εr ) = 0, x(εr ) = 0.5, (A.22a)

Cs(εr ) =
{

0 if s /∈ Ξr ,

arbitrary if s ∈ Ξr .
(A.22b)

Above expressions define a family of solutions if εr is degenerate and they
define a single solution if εr is nondegenerate.

In addition, if εr is degenerate there is a nontrivial set {Cs(εr ) : s ∈ Ξr } such
that

∑

s αs(εr )Cs(εr ) = 0. This follows from the fact that there is at least one
p ∈ Ξr such that αp(εr ) 	= 0. In this case fractional shift equation has in addi-
tion to (A.22) another family of solutions:

X (εr ) arbitrary, (A.23a)

Cs(εr ) = 0 if s /∈ Ξr ,
∑

p∈Ξr

αp(εr )C p(εr ) = 0. (A.23b)

If εr is nondegenerate this family of solutions does not exist. Hence in a
nondegenerate active resonant point fractional shift equation has only one solu-
tion. One easily finds that such a point is necessarily a proper resonant point.
However if the resonant point εr is degenerate, there is a nontrivial family of
solutions (A.23) in addition to the family of solutions (A.22). In this case there is
always a nontrivial state |θ〉 ∈ Xa

ρ such that H(εr ) |θ〉 = f(εr ) |θ〉 = 0. The point
εr is hence anomal. In conclusion, if a resonant point εr is active and nonde-
generate, it is a proper resonant point and there is a unique solution (A.22) with
a fractional shift x(εr ) = 0.5. However, if this point is degenerate, it is anomal
and there are additional solutions (A.23) with arbitrary fractional shift consis-
tent with the requirement (24).

Consider now the ε → εr limit of the solution (30) where εr is active. Let
ε = εr + h where h 	= 0 is an infinitesimal quantity. For each s ∈ Ξr one has

ε − ηs(ε) = (1 − η′
s(εr )

)

h + O(h2). (A.24)

Expression ε − ηs(ε) is hence at most of the order O(h). Since εr is active,
(30a) implies

lim
ε→εr

X (ε) = 0, lim
ε→εr

x(ε) = 0.5. (A.25a)

In conjuncture with (A.22a) this implies (32a). Concerning corresponding
eigenstate (30b), this eigenstate formally diverges in a limit ε → εr . However,
norm of this eigenstate is of no significance and this eigenstate can be renormal-
ized in such a way as to obtain finite result. If η′

s(εr ) 	= 1 for each s ∈ Ξr and
due to (A.24), expression (30b) implies

lim
ε→εr

h |ψ(ε)〉 =
∑

s∈Ξr

α∗
s (εr )

1 − η′
s(εr )

|φs(εr )〉, εr ∈ D. (A.25b)



T.P. Živković / Interaction of a finite quantum system 595

Slightly more complicated expression is obtained if for some s ∈ Ξr one has
η′

s(εr ) = 1.
Solution (A.22) in the active resonant point contains as a special case solu-

tion (A.25) that is the ε → εr limit of the solution (30). This proves (32). We
call this limit solution a standard solution. If the active resonant point εr is not
degenerate, it is a proper resonant point. In this case standard solution is the
only solution in this point. In particular one finds (33).
(b2) Resonant point εr ∈ Ξ is passive:

If εr is passive one has αs(εr ) = 0 for each s ∈ Ξr . This point is hence ano-
mal. In addition, according to (A.20) in this point all coefficients Cs(εr ) (s ∈ Ξr )

are arbitrary, while coefficients Cs(εr ) (s /∈ Ξr ) satisfy the condition

Cs(εr ) = α∗
s (εr )

ηs(εr )− εr
X (εr )

∑

p/∈Ξr

αp(εr )C p(εr ), s /∈ Ξr . (A.26)

One family of solutions that satisfies this condition is:

X (εr ) arbitrary, (A.27a)

Cs(εr ) =
{

arbitrary if s ∈ Ξr ,

0 if s /∈ Ξr .
(A.27b)

This is not a most general solution in a passive resonant point. In particu-
lar, in this point one may have some additional solutions that satisfy Cs(εr ) 	= 0
for at least some s /∈ Ξr . However, solution (A.27) of a fractional shift equation
is general enough to demonstrate that in a passive resonant point one should
have isolated solution(s) of the combined system.

Consider now the ε → εr limit of the solution (30) where εr is passive.
Since αs(εr ) = 0 and ηs(εr ) = εr for each s ∈ Ξr , one has αs(ε) = O(h) and
α∗

s (ε)αs(ε) = O(h2) (ε = εr +h) for each s ∈ Ξr . It follows that, unless η′
s(εr ) = 1

for some s ∈ Ξr , in a limit ε → εr one has α∗
s (ε)αs(ε)

/

(ε − ηs(ε)) → 0 for each
s ∈ Ξr . Further, if εr is not a critical point there is at least one s /∈ Ξr such
that αs(εr ) 	= 0. In this case relation (30a) implies (34a). However, if εr ≡ εc is
a critical point one has αs(εc) = 0 for each s = 1, . . . , ρ. In this case one finds
(34b).

A.4.4. Component |Ψa(ε)〉 ∈ Xa
ρ of the eigenstate |Ψ(ε)〉

Inserting above expressions for a fractional shift x(ε) and for the eigen-
state |ψ(ε)〉 into relation (25a) one obtains the corresponding expression for the
component |Ψa(ε)〉 of the embedded eigenstate |Ψ(ε)〉 of the combined system.
If ε ∈ D is not a resonant point, one has a unique component |Ψa(ε)〉 of
|Ψ(ε)〉. However, in a resonant point ε = εr there is a possibility of the mul-
tiple solutions. If this point is nondegenerate and active, i.e. if it is a proper
resonant point, fractional shift equation has a unique solution. Otherwise this
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point is anomal and in this case fractional shift equation has multiple solu-
tions. In particular, according to expressions (A.23) and (A.27), if εr is degen-
erate and/or passive, fractional shift x(εr ) can assume any value consistent with
the requirement (24). Hence one may choose x(εr ) such that sin (π(x(εr )) 	= 0.
At the same time those expressions imply that |ψ(εr )〉 can be chosen such that
〈ψ(εr ) | f(εr ) |ψ(εr )〉 ≡ ∣

∣
∑

s αs(εr )Cs(εr )
∣
∣2 = 0. According to (25a) this choice

produces divergent solutions for |Ψa(εr )〉. The corresponding density ρa(εr ) is
hence also divergent. Divergence of the component |Ψa(ε)〉 in an anomal reso-
nant point indicates existence of isolated eigenstate(s) [8]. In order to treat cor-
rectly anomal points one has to include in the expressions for various quantities
such as densities ρa(ε), ρs(ε) and ρa

s (ε) additional δ-like contributions [8].

A.5. Properties of eigenvalue equations (1a), (10) and (27a)

Generalized eigenvalue equations (1a), (10) and (27a) are equivalent to
standard eigenvalue equations

A(1)
∣
∣
∣Θ

(1)
s

〉

= Es

∣
∣
∣Θ

(1)
s

〉

, (A.28a)
[

β2ω(1)(εs)+ A(1)
]
∣
∣
∣θ
(1)
s

〉

= εs

∣
∣
∣θ
(1)
s

〉

, (A.28b)
[

β2ω(1)(ε)+ A(1)
]
∣
∣
∣φ
(1)
s (ε)

〉

= ηs(ε)

∣
∣
∣φ
(1)
s (ε)

〉

, s = 1, . . . , ρ, (A.28c)

where
∣
∣
∣Θ

(1)
s

〉

= (Sa)1/2 |Θs〉 ,
∣
∣
∣θ
(1)
s

〉

= (Sa)1/2 |θs〉 , (A.29a)
∣
∣
∣φ
(1)
s (ε)

〉

= (Sa)1/2 |φs(ε)〉 , ε ∈ D, s = 1, . . . , ρ, (A.29b)

A(1) = (Sa)−1/2 A
(

Sa)−1/2 , ω(1)(ε) = (Sa)−1/2 ω(ε)
(

Sa)−1/2 (A.29c)

are transformed eigenstates and transformed operators. Since Sa is positive defi-
nite, (Sa)−1/2 is regular. Operators A(1) and ω(1)(ε) are hence Hermitian. This
implies that eigenvalues Es , εs and ηs(ε) are real.

Equation (A.28b) is a nonlinear eigenvalue equation since the eigenvalue εs
is an argument of the operator ω(1)(εs) on the left-hand side of this equation.
The corresponding eigenstates are hence not required to be orthogonal to each
other. As a consequence, generic eigenvalue equation (10) may have more than ρ
distinct eigenvalues and eigenstates. Unlike equation (A.28b), equations (A.28a)
and (A.28c) are linear eigenvalue equations. Hence the transformed eigenstates∣
∣
∣Θ

(1)
s

〉

and
∣
∣
∣φ
(1)
s (ε)

〉

can be orthonormalized in a standard way

〈

Θ(1)
s

∣
∣
∣ Θ

(1)
p

〉

= δsp,
〈

φ(1)s (ε)

∣
∣
∣ φ

(1)
p (ε)

〉

= δsp, s, p = 1, . . . ρ. (A.30)
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This implies (1b) and (27b), respectively. In addition, relations (A.28) and
(A.29) imply

A(1) =
ρ
∑

p

∣
∣
∣Θ

(1)
p

〉

E p

〈

Θ(1)
p

∣
∣
∣, (A.31a)

ρ
∑

p

∣
∣φp(ε)

〉 〈

φp(ε)
∣
∣ Sa = Ia, (A.31b)

where Ia is a projection operator on the space Xa
ρ .

If the operator ω(ε) is bounded in some neighborhood of the point ε = Es
one can apply perturbation expansion to the expressions (A.28b) and (A.28c).
In this case one finds that eigenvalues εs as well as eigenvalues ηs(ε) differ from
the corresponding local eigenvalue Es by a small quantity of the order O(β2).
In particular, if this local eigenvalue is nondegenerate one finds

εs = Es + β2 〈Θs | ω(Es) |Θs 〉 + O(β4), (A.32a)

ηs(ε) = Es + β2 〈Θs | ω(ε) |Θs 〉 + O(β4). (A.32b)

One also finds

|θs〉 = |Θs〉 + O(β2), |ΨI 〉 = |ΘI 〉 + O(β2), (A.33a)

|φs(ε)〉 = |θs〉 + O
(

β2(ε − εs)
)

= |Θs〉 + O(β2). (A.33b)

Consider equation (A.28b) from another point of view. This equation
implies

〈

θ
(1)
s

∣
∣
∣β2ω(1)(εs) + A(1) − εs

∣
∣
∣θ
(1)
s

〉

= 0. Variation of this expression with

the imposed condition
〈

δθ
(1)
s

∣
∣
∣ θ

(1)
s

〉

= 0 that is required in order to conserve nor-

malization of
∣
∣
∣θ
(1)
s

〉

leads to

2β
〈

θ(1)s

∣
∣
∣ ω

(1)(εs)

∣
∣
∣θ
(1)
s

〉

dβ +
〈

θ(1)s

∣
∣
∣ β

2dω(1)/dεs − 1
∣
∣
∣θ
(1)
s

〉

dεs

+
〈

θ(1)s

∣
∣
∣ dA(1)

∣
∣
∣θ
(1)
s

〉

≡ 2β 〈θs | ω(εs) |θs 〉 dβ

+
〈

θs

∣
∣
∣ β

2dω
/

dεs − Sa |θs

〉

dεs +
〈

θ(1)s

∣
∣
∣ dA(1)

∣
∣
∣θ
(1)
s

〉

= 0. (A.34a)



598 T.P. Živković / Interaction of a finite quantum system

Assume that dA(1) involves only variations dE p of local eigenvalues E p and

no variations of
∣
∣
∣Θ

(1)
p

〉

. In this case expression (A.31a) implies

〈

θ(1)s

∣
∣
∣ dA(1)

∣
∣
∣θ
(1)
s

〉

=
ρ
∑

p

〈

θ(1)s

∣
∣
∣ Θ

(1)
p

〉

dE p

〈

Θ(1)
p

∣
∣
∣ θ

(1)
s

〉

=
ρ
∑

p

〈

θs
∣
∣ Sa

∣
∣Θp

〉 〈

Θp
∣
∣ Sa |θs

〉

dE p. (A.34b)

From the expressions (A.34) one now derives

∂εs

∂β
= 2β 〈θs | ω(εs) |θs 〉

〈θs | Sa |θs 〉 − β2
〈

θs
∣
∣ dω

/

dεs |θs
〉 , (A.35a)

∂εs

∂E p
=

〈

θs
∣
∣ Sa

∣
∣Θp

〉 〈

Θp
∣
∣ Sa |θs

〉

〈θs | Sa |θs 〉 − β2 〈θs | dω/dεs |θs 〉 . (A.35b)

Those relations give the rate of change of the eigenvalues εs with a change
of the coupling β and with a change of local eigenvalues E p. In the case εs ≡
εI ∈ �D relations (A.35) reduce to expressions (19). In the case εs ≡ εr ∈ D those
relations imply similar expressions involving resonant points εr ∈ D.

In a similar way eigenvalue equation (A.28c) implies

∂ηs

∂ε
= β2 〈φs(ε) | dω(ε)/dε |φs(ε)〉 , (A.36a)

∂ηs

∂β
= 2β 〈φs(ε) | ω(ε) |φs(ε)〉 . (A.36b)

where |φs(ε)〉 are orthonormalized according to (27b). Further, if ηs(ε) and αs(ε)

(s ∈ Ξr ) are reasonably smooth in the resonant point ε = εr one can expand
those functions in this point to obtain

ε − ηs(ε) = (1 − η′
s(εr )

)

(ε − εr ) [1 + O (ε − εr )] , (A.37a)

αs(ε) = αs(εr )+ O(ε − εr ), (A.37b)

Fss(ε) = Fss(εr )+ O(ε − εr ), (A.37c)

where O(x) is a small quantity of the order x . Since Fss(ε) � 0 for each ε ∈ D,
close to a passive resonant point ε = εr expression (A.37c) should be replaced
with stronger requirement

Fss(ε) = O((ε − εr )
2), s ∈ Ξr . (A.37d)
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A.6. Weak coupling limit

Consider component |Ψa(ε)〉 ∈ Xa
ρ of the embedded eigenstate |Ψ(ε)〉

(equation (35)) in the case of small β. Assume first that ω(ε) is bounded in
D. According to (35) component |Ψa(ε)〉 is a linear combination of ρ states
∣
∣Ψa

s (ε)
〉 ∈ Xa

ρ . Since ω(ε) is bounded in D there is K <∞ such that
∣
∣ω(ε)(1)

∣
∣<K

for each ε ∈ D. Hence expression (A.28c) implies that in a limit β → 0
each eigenvalue ηs(ε) of (27a) converges to some local eigenvalue Er . If Er is
κr -degenerate there are κr functions ηs(ε) that in this limit converge to Er .
Define Zr such that s ∈ Zr if ηs(0) = Er and s /∈ Zr if ηs(0) 	= Er . If s ∈ Zr
one has |ηs(ε)− Er |<β2 K for each ε ∈ D. However, if s /∈ Zr there is M>0 such
that |ηs(ε)− Er |>M for each ε ∈ D. In a similar way one can associate eigen-
value ηs(ε) of (27a) with eigenvalue εs of a generic eigenvalue equation (10). One
thus finds

|ηs(ε)− εs | < β2L , ε ∈ D, (A.38)

where L<∞ is some finite constant that does not depend on ε. Hence, provide
β is sufficiently small, one has ηs(ε) = εs + O(β2) ≈ εs for each ε ∈ D. Insert-
ing into (35b) one finds that for sufficiently small β the state

∣
∣Ψa

s (ε)
〉

(s ∈ Zr )

is mainly concentrated in some neighborhood of εs ≈ Er and the norm of this
state becomes negligible if |ε − εs | is large. According to (36a) if εs ≈ Er (s ∈ Zr )

is active the state
∣
∣Ψa

s (εr )
〉

is of the order O(β−1). However, according to (35b)
if ε 	= εs ≈ Er the state

∣
∣Ψa

s (ε)
〉

is of the order O(β). Hence for sufficiently
small β this state must be concentrated in some small neighborhood of Er . Since
∣
∣Ψa

s (ε)
〉 = 0 if ε /∈ D, this implies that each state

∣
∣Ψa

s (ε)
〉

that is associated with
eigenvalue εs /∈ D can be neglected if β is sufficiently small. In other words,
∣
∣Ψa

s (ε)
〉 ≈ 0 if s ∈ Zr and if Er ∈ �D. Further and due to (A.37) and (A.38), in

the expression (35b) one can substitute ε−ηs(ε) ≈ (ε − εr ), Fss(ε) ≈ Fss(εr ) and
αs(ε) ≈ αs(εr ) for each s ∈ Zr . However, if s /∈ Zr the corresponding terms in
the denominator of (35b) can be neglected. Hence one derives expression (42a).

Above we have assumed that ω(ε) is bounded in D. However, operator ω(ε)

may diverge in some point ed ∈ Λ. If ω(ε) diverges in a point ε = Er expres-
sion (42a) fails. However, if ω(ε) does not diverges in this point expression (42a)
is still mainly correct. In this case estimate (A.38) applies to each ε ∈ D, except
to those values of ε that are contained in some small neighborhood of each
point ed ∈ Λ where ω(ε) diverges. Accordingly, expression (42a) applies to each
ε ∈ D, except of those values of ε that are in the immediate vicinity of some
point ed ∈ Λ where ω(ε) is singular. Instead of to have some special treatment
for each ε that is close to some point ed ∈ Λ, it is more convenient to consider
expressions (42a) correct for each ε ∈ D and to incorporate all deviations in
some additional functions

∣
∣Ψa

d(ε)
〉

. Each function
∣
∣Ψa

d(ε)
〉

is associated with a res-
onant point εd ≡ εd(ε) that satisfies εd(0) = ed ∈ Λ and it is concentrated mainly
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in the immediate vicinity of the point ed ∈ Λ. According to this point of view we
associate each function

∣
∣Ψa

s (ε)
〉

with some resonant point εs(β) instead of with
a local eigenvalue Er . One finds that if εs(0) = Er /∈ Λ the corresponding state
∣
∣Ψa

s (ε)
〉

is given by (35b). However, if εs(0) ∈ Λ the corresponding state
∣
∣Ψa

s (ε)
〉

is given by a completely different expression [8]. In particular, if εs(0) ∈ Λ and
if at the same time εs(0) /∈

{

E p
}

one derives expression (47) [8].

A.7. The state
∣
∣Ψa

s (ε)
〉

close to a resonant point ε = εr

In a previous section the case of small β was considered. Assume now that
β is not small and consider the state

∣
∣Ψa

s (ε)
〉

in some small neighborhood � of
the resonant point ε = εr . Let εr be a κr -degenerate resonant point. Consider the
state (35b) in the immediate vicinity of this point. There are κr functions ηs(ε)

(s ∈ Ξr ) that satisfy ηs(εr ) = εr . Using expansion (A.37) one finds

∣
∣Ψa

s (ε)
〉 ≈ β

√
√
√
√(ε − εr )

2 + π2β4

(

∑

p∈Ξr

Fpp(εr )

1−η′
p(εr )

)2

α∗
s (εr )

ε − η′
s(εr )

|φs(ε)〉 , s ∈ Ξr .

(A.39)

On the other hand, if s /∈ Ξr expression (35b) implies
∣
∣Ψa

s (εr )
〉 = 0. Hence

(49a) where
∣
∣
∣Ψa

(r)(ε)
〉

is a sum of all κr states
∣
∣Ψa

s (ε)
〉

that are associated with a
resonant point εr .
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